Bài 120 trang 95 SBT toán 8 tập 1

Giải bài 120 trang 95 sách bài tập toán 8. Cho tam giác ABC vuông tại A, điểm D thuộc cạnh AC. Gọi E, F, G theo thứ tự là trung điểm của BD, BC, DC. Chứng minh rằng tứ giác AEFG là hình thang cân.

Quảng cáo

Đề bài

Cho tam giác \(ABC\) vuông tại \(A,\) điểm \(D\) thuộc cạnh \(AC\). Gọi \(E,\, F,\, G\) theo thứ tự là trung điểm của \(BD,\, BC,\, DC.\) Chứng minh rằng tứ giác \(AEFG\) là hình thang cân.

Phương pháp giải - Xem chi tiết

Áp dụng tính chất đường trung bình của tam giác 

+) Đường trung bình của tam giác là đoạn thẳng nối trung điểm hai cạnh của tam giác.

+) Đường trung bình của tam giác thì song song với cạnh thứ ba và bằng nửa cạnh ấy.

Tính chất đường trung tuyến ứng với cạnh huyền trong tam giác vuông: Trong tam giác vuông đường trung tuyến tuyến ứng với cạnh huyền bằng nửa cạnh ấy

Định nghĩa hình thang cân: Hình thang có hai góc ở đáy bằng nhau là hình thang cân.

Lời giải chi tiết

Trong \(∆ BDC\) ta có:

\(E\) là trung điểm của \(BD\) (gt)

\(F\) là trung điểm của \(BC\) (gt)

Nên \(EF\) là đường trung bình của \(∆ BDC\)

\(⇒ EF // DC\) hay \(EF // AG\)

Suy ra: Tứ giác \(AEFG\) là hình thang

+ Vì \(F\) là trung điểm của \(BC\) (gt)

\(G\) là trung điểm của \(DC\) (gt)

Nên \(FG\) là đường trung bình của \(∆ CBD\)

\(⇒ FG // BD\) \(⇒ {\widehat G_1} = {\widehat D_1}\) (đồng vị) (1)

Trong tam giác \(ABD\) vuông tại \(A\) có \(AE\) là trung tuyến ứng với cạnh huyền \(BD\)

\(⇒ AE = ED = \dfrac{1}{2}BD\) (tính chất tam giác vuông)

Nên \(∆ AED\) cân tại \(E\) \( \Rightarrow {\widehat A_1} = {\widehat D_1}\)  (2)

Từ (1) và (2) suy ra: \({\widehat A_1} = {\widehat G_1}\)

Vậy hình thang \(AEFG\) là hình thang cân (theo định nghĩa).

Loigiaihay.com

  • Bài 121 trang 95 SBT toán 8 tập 1

    Giải bài 121 trang 95 sách bài tập toán 8. Cho tam giác nhọn ABC, các đường cao BD, CE. Gọi H, K theo thứ tự là chân các đường vuông góc kẻ từ B, C đến đường thẳng DE. Chứng minh rằng EH = DH

  • Bài 122 trang 95 SBT toán 8 tập 1

    Giải bài 122 trang 95 sách bài tập toán 8. Cho tam giác ABC vuông tại A, đường cao AH. Gọi D, E theo thứ tự là chân các đường vuông góc kẻ từ H đến AB, AC.

  • Bài 123 trang 95 SBT toán 8 tập 1

    Giải bài 123 trang 95 sách bài tập toán 8. Cho tam giác ABC vuông tại A, đường cao AH, đường trung tuyến AM...

  • Bài 9.1 phần bài tập bổ sung trang 95 SBT toán 8 tập 1

    Giải bài 9.1 phần bài tập bổ sung trang 95 sách bài tập toán 8. Một hình chữ nhật có hai cạnh kề bằng 4cm và 6cm. Độ dài đường chéo của hình chữ nhật đó bằng bao nhiêu xentimét ?

  • Bài 9.2 phần bài tập bổ sung trang 95 SBT toán 8 tập 1

    Giải bài 9.2 phần bài tập bổ sung trang 95 sách bài tập toán 8. Cho tam giác ABC vuông tại A, đường cao AH. Gọi I, K theo thứ tự là trung điểm của AB, AC. Tính số đo góc IHK.

Quảng cáo

Tham Gia Group Dành Cho 2K11 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close