Giải bài 1 trang 71 SGK Toán 10 tập 1 – Cánh diềuCho tam giác ABC có AB = 3,5;AC = 7,5 A = 135 Tính độ dài cạnh BC và bán kính R của đường tròn ngoại tiếp tam giác (làm tròn kết quả đến hàng phần mười). Quảng cáo
Đề bài Cho tam giác ABC có \(AB = 3,5;\;AC = 7,5;\;\widehat A = {135^o}.\) Tính độ dài cạnh BC và bán kính R của đường tròn ngoại tiếp tam giác (làm tròn kết quả đến hàng phần mười). Phương pháp giải - Xem chi tiết Bước 1: Tính BC, bằng cách áp dụng định lí cosin trong tam giác ABC: \({a^2} = {b^2} + {c^2} - 2bc.\cos A\) Bước 2: Tính R, dựa vào định lí sin trong tam giác ABC: \(\frac{{BC}}{{\sin A}} = 2R \Rightarrow R = \frac{{BC}}{{2.\sin A}}\) Lời giải chi tiết Áp dụng định lí cosin trong tam giác ABC ta có: \(B{C^2} = A{C^2} + A{B^2} - 2AC.AB.\cos A\) \(\begin{array}{l} \Leftrightarrow B{C^2} = 7,{5^2} + 3,{5^2} - 2.7,5.3,5.\cos {135^o}\\ \Leftrightarrow B{C^2} \approx 105,6\\ \Leftrightarrow BC \approx 10,3\end{array}\) Áp dụng định lí sin trong tam giác ABC ta có: \(\frac{{BC}}{{\sin A}} = 2R\) \( \Rightarrow R = \frac{{BC}}{{2.\sin A}} = \frac{{10,3}}{{2.\sin {{135}^o}}} \approx 7,3\)
Quảng cáo
|