TUYENSINH247 LÌ XÌ +100% TIỀN NẠP

X2 TIỀN NẠP TÀI KHOẢN HỌC TRỰC TUYẾN NGÀY 18-20/2

Bắt đầu sau 1 ngày
Xem chi tiết

Giải mục 2 trang 61, 62, 63, 64 SGK Toán 10 tập 1 - Kết nối tri thức

Trong mặt phẳng tọa độ Oxy, cho u = (2; - 3), v = (4;1), a = (8; - 12 Trong mặt phẳng tọa độ Oxy, cho điểm M(x0, y0). Gọi P, Q tương ứng là hình chiếu vuông góc của M trên trục hoành Ox và trục tung Oy (H.4.35) Trong mặt phẳng tọa độ Oxy, cho các điểm M(x;y) và N(x’; y’) Trong mặt phẳng tọa độ Oxy, cho hai điểm A(2; 1), B(3; 3). Từ thông tin dự báo được đưa ra ở đầu bài học, hãy xác định tọa độ vị trí M của tâm bão tại thời điểm 9 giờ trong khoảng thời gian 12 giờ của dự báo.

Tổng hợp đề thi giữa kì 2 lớp 10 tất cả các môn - Kết nối tri thức

Toán - Văn - Anh - Lí - Hóa - Sinh

Quảng cáo
Lựa chọn câu để xem lời giải nhanh hơn

HĐ3

Trong mặt phẳng tọa độ Oxy, cho u=(2;3),v=(4;1),a=(8;12)u=(2;3),v=(4;1),a=(8;12)

a) Hãy biểu thị mỗi vectơ u,v,au,v,a theo các vectơ i,ji,j

b) Tìm tọa độ của các vectơ u+v,4.uu+v,4.u

c) Tìm mối liên hệ giữa hai vectơ u,au,a

Phương pháp giải:

a) Vectơ aa có tọa độ (x;y) thì a=x.i+y.ja=x.i+y.j

b)

Bước 1: Tính u+v,4.uu+v,4.u theo các vectơ i,ji,j

Bước 2: Suy ra tọa độ của các vectơ u+v,4.uu+v,4.u

c)

Quan sát biểu thị theo các vectơ i,ji,j của các vectơ u,au,a để suy ra mối liên hệ.

Lời giải chi tiết:

a) Ta có: u=(2;3)u=(2;3)

u=2.i+(3).ju=2.i+(3).j

Tương tự ta có: v=(4;1),a=(8;12)v=(4;1),a=(8;12)

v=4.i+1.j;a=8.i+(12).jv=4.i+1.j;a=8.i+(12).j

b) Ta có: {u=2.i+(3).jv=4.i+1.j(theo câu a)

{u+v=(2.i+(3).j)+(4.i+1.j)4.u=4(2.i+(3).j){u+v=(2.i+4.i)+((3).j+1.j)4.u=4.2.i+4.(3).j{u+v=6.i+(2).j4.u=8.i+(12).j

c) Vì {4.u=8.i+(12).ja=8.i+(12).j nên ta suy ra 4.u=a

HĐ4

Trong mặt phẳng tọa độ Oxy, cho điểm M(xo;yo). Gọi P, Q tương ứng là hình chiếu vuông góc của M trên trục hoành Ox và trục tung Oy (H.4.35)

a) Trên trục Ox, điểm P biểu diễn số nào? Biểu thị OP theo i và tính độ dài của OP theo xo.

b) Trên trục Oy, điểm Q biểu diễn số nào? Biểu thị OQ theo j và tính độ dài của OQ theo yo.

c) Dựa vào hình chữ nhật OPMQ, tính độ dài của OM theo xo,yo.

d) Biểu thị OM theo các vectơ i,j.

Phương pháp giải:

a) P biểu diễn hoành độ của điểm M.

b) Q biểu diễn tung độ của điểm M.

c) Tính độ dài của OM theo các cạnh của hình chữ nhật dựa vào định lí Pytago

d) Biểu thị OM theo các vectơ OP, OQ (quy tắc hình bình hành)

Lời giải chi tiết:

a) Vì P là hình chiếu vuông góc của M trên Ox nên điểm P biểu diễn hoành độ của điểm M là số xo

Ta có: vectơ OP cùng phương, cùng hướng với i|OP|=xo=xo.|i|

OP=xo.i.

b) Vì Q là hình chiếu vuông góc của M trên Oy nên điểm Q biểu diễn tung độ của điểm M là số yo

Ta có: vectơ OQ cùng phương, cùng hướng với j|OQ|=yo=yo.|j|

OQ=yo.j.

c) Ta có: OM=OM.

OM2=OP2+MP2=OP2+OQ2=xo2+yo2

|OM|=xo2+yo2

d) Ta có: Tứ giác OPMQ là hình chữ nhật, cũng là hình bình hành  nên OM=OP+OQ

OM=xo.i+yo.j

HĐ5

Trong mặt phẳng tọa độ Oxy, cho các điểm M(x;y) và N(x’; y’)

a) Tìm tọa độ của các vectơ OM,ON.

b) Biểu thị vectơ MN theo các vectơ OM,ON và tọa độ của MN.

c) Tìm độ dài của vectơ MN

Phương pháp giải:

a) Tọa độ của vectơ OM,ON chính là tọa độ của M, N

b) Biểu thị vectơ MN theo các vectơ OM,ON bằng quy tắc hiệu.

Tìm tọa độ của MN dựa vào biểu thị theo hiệu ở trên và tọa độ của vectơ OM,ON đã biết.

c) Độ dài của vectơ MN(a;b)|MN|=a2+b2

Lời giải chi tiết:

a) Vì điểm M có tọa độ (x; y) nên vectơ OM có tọa độ (x; y).

Và điểm N có tọa độ (x’; y’) nên vectơ ON có tọa độ (x’; y’).

 

b) Ta có:  MN=ONOM (quy tắc hiệu)

OM có tọa độ (x; y); ON có tọa độ (x’; y’).

MN=(x;y)(x;y)=(xx;yy)

c) Vì MN có tọa độ (xx;yy) nên |MN|=(xx)2+(yy)2

Luyện tập 2

Trong mặt phẳng tọa độ Oxy, cho hai điểm A(2; 1), B(3; 3).

a) Các điểm O, A, B có thẳng hàng hay không?

b) Tìm điểm M(x; y) để OABM là một hình hành.

Phương pháp giải:

a) Các điểm O, A, B thẳng hàng khi và chỉ khi hai vectơ OA,OB cùng phương

b) OABM là một hình hành khi và chỉ khi OA=MB

Lời giải chi tiết:

a) Ta có: OA=(2;1) ( do A(2; 1)) và OB=(3;3) (do B (3; 3)).

Hai vectơ này không cùng phương (vì 2313).

Do đó các điểm O, A, B không cùng nằm trên một đường thẳng.

Vậy chúng không thẳng hàng.

b) Các điểm O, A, B không thẳng hàng nên OABM là một hình hành khi và chỉ khi OA=MB.

Do OA=(2;1),MB=(3x;3y) nên

OA=MB{2=3x1=3y{x=1y=2

Vậy điểm cần tìm là M (1; 2).

Vận dụng

Từ thông tin dự báo được đưa ra ở đầu bài học, hãy xác định tọa độ vị trí M của tâm bão tại thời điểm 9 giờ trong khoảng thời gian 12 giờ của dự báo.

Lời giải chi tiết:

Gọi tọa độ điểm M là (x; y)

Theo dự báo, tại thời điểm 9 giờ, tâm bão đã đi được 912=34 khoảng cách từ A tới B.

Hay AM=34.ABAM=34.AB(*)

AM=(x13,8;y108,3),AB=(14,113,8;106,3108,3)=(0,3;2)

Do đó (){x13,8=34.0,3y108,3=34.(2){x=14,025y=106,8

Vậy tọa độ điểm M là (14,025; 106,8)

Quảng cáo

Tham Gia Group Dành Cho 2K9 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

>> Học trực tuyến Lớp 10 cùng thầy cô giáo giỏi tại Tuyensinh247.com, Cam kết giúp học sinh học tốt, bứt phá điểm 9,10 chỉ sau 3 tháng, hoàn trả học phí nếu học không hiệu quả.

close