Giải bài 4.19 trang 65 SGK Toán 10 tập 1 – Kết nối tri thứcSự chuyển động của một tàu thủy được thể hiện trên một mặt phẳng tọa độ như sau: Tàu khởi hành từ vị trí A(1; 2) chuyển động thẳng đều với vận tốc (tính theo giờ) được biểu thị bởi vectơ v = {3;4}. Xác định vị trí của tàu (trên mặt phẳng tọa độ) tại thời điểm sau khi khởi hành 1,5 giờ. Quảng cáo
Đề bài Sự chuyển động của một tàu thủy được thể hiện trên một mặt phẳng tọa độ như sau: Tàu khởi hành từ vị trí A(1; 2) chuyển động thẳng đều với vận tốc (tính theo giờ) được biểu thị bởi vectơ \(\overrightarrow v = \left( {3;4} \right)\). Xác định vị trí của tàu (trên mặt phẳng tọa độ) tại thời điểm sau khi khởi hành 1,5 giờ. Phương pháp giải - Xem chi tiết Lập luận chỉ ra \(\overrightarrow {AB} = 1,5.\overrightarrow v \) Lời giải chi tiết Gọi B(x; y) là vị trí của tàu (trên mặt phẳng tọa độ) tại thời điểm sau khi khởi hành 1,5 giờ. Do tàu khởi hành từ A đi chuyển với vận tốc được biểu thị bởi vectơ \(\overrightarrow v = \left( {3;4} \right)\) nên cứ sau mỗi giờ, tàu đi chuyển được một quãng bằng \(\left| {\overrightarrow v } \right|\). Vậy sau 1,5 giờ tàu di chuyển tới B, ta được: \(\overrightarrow {AB} = 1,5.\overrightarrow v \) \(\begin{array}{l} \Leftrightarrow (x - 1;y - 2) = 1,5\;.\left( {3;4} \right)\\ \Leftrightarrow \left\{ \begin{array}{l}x - 1 = 4,5\\y - 2 = 6\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 5,5\\y = 8\end{array} \right.\end{array}\) Vậy sau 1,5 tàu ở vị trí (trên mặt phẳng tọa độ) là B(5,5; 8).
Quảng cáo
|