Giải bài tập 3 trang 72 SGK Toán 9 tập 1 - Cánh diềuRút gọn biểu thức: a. (A = sqrt {40_{}^2 - 24_{}^2} ); b. (B = left( {sqrt {12} + 2sqrt 3 - sqrt {27} } right).sqrt 3 ); c. (C = frac{{sqrt {63_{}^3 + 1} }}{{sqrt {63_{}^2 - 62} }}); d. (D = sqrt {60} - 5sqrt {frac{3}{5}} - 3sqrt {frac{5}{3}} ). Quảng cáo
Đề bài Rút gọn biểu thức: a. \(A = \sqrt {40_{}^2 - 24_{}^2} \); b. \(B = \left( {\sqrt {12} + 2\sqrt 3 - \sqrt {27} } \right).\sqrt 3 \); c. \(C = \frac{{\sqrt {63_{}^3 + 1} }}{{\sqrt {63_{}^2 - 62} }}\); d. \(D = \sqrt {60} - 5\sqrt {\frac{3}{5}} - 3\sqrt {\frac{5}{3}} \). Video hướng dẫn giải Phương pháp giải - Xem chi tiết Áp dụng các kiến thức về căn bậc hai của một thương, căn bâc hai của một tích, đưa thừa số vào trong căn bậc hai và đưa thừa số ra ngoài căn bậc hai để giải bài toán. Lời giải chi tiết a. \(A = \sqrt {40_{}^2 - 24_{}^2} \) \(\begin{array}{l} = \sqrt {\left( {40 - 24} \right)\left( {40 + 24} \right)} \\ = \sqrt {16.64} = \sqrt {16} .\sqrt {64} \\ = 4.8 = 32\end{array}\) b. \(B = \left( {\sqrt {12} + 2\sqrt 3 - \sqrt {27} } \right).\sqrt 3 \) \(\begin{array}{l} = \left( {2\sqrt 3 + 2\sqrt 3 - 3\sqrt 3 } \right).\sqrt 3 \\ = \sqrt 3.\sqrt 3 \\ = 3\end{array}\) c. \(C = \frac{{\sqrt {{{63}^3} + 1} }}{{\sqrt {{{63}^2} - 62} }}\) \(\begin{array}{l} = \frac{{\sqrt {\left( {63 + 1} \right)\left( {63_{}^2 - 63 + 1} \right)} }}{{\sqrt {63_{}^2 - 62} }}\\ = \frac{{\sqrt {64.\left( {63_{}^2 - 62} \right)} }}{{\sqrt {63_{}^2 - 62} }}\\ = \frac{{\sqrt {64} .\sqrt {63_{}^2 - 62} }}{{\sqrt {63_{}^2 - 62} }}\\ = \sqrt {64} \\ = 8\end{array}\) d. \(D = \sqrt {60} - 5\sqrt {\frac{3}{5}} - 3\sqrt {\frac{5}{3}} \) \(\begin{array}{l} = \sqrt {4.15} - \sqrt {5^2.\frac{3}{5}} - \sqrt {3^2.\frac{5}{3}}\\ = 2\sqrt {15}- \sqrt {15} - \sqrt {15}\\ = 0\end{array}\)
Quảng cáo
|