Bài 9 trang 84 SBT toán 8 tập 2

Giải bài 9 trang 84 sách bài tập toán 8. Hình thang ABCD (AB // CD) có hai đường chéo AC và BD cắt nhau tại O (h.8)...

Quảng cáo

Đề bài

Hình thang \(ABCD\; (AB // CD)\) có hai đường chéo \(AC\) và \(BD\) cắt nhau tại \(O\) (h.8).

Chứng minh rằng: \(OA.OD = OB.OC.\)

Phương pháp giải - Xem chi tiết

Sử dụng:

Hệ quả định lí Ta-lét: Nếu một đường thẳng cắt hai cạnh còn lại của một của một tam giác và song song với các cạnh còn lại thì nó tạo thành một tam giác mới có ba cạnh tương ứng tỉ lệ với ba cạnh còn lại của tam giác đã cho.

Lời giải chi tiết

Xét \(∆ OCD\) có \(AB // CD\) (gt)

Theo hệ quả định lí Ta-lét ta có:

\(\displaystyle{{OA} \over {OC}} = {{OB} \over {OD}}\)

\( \Rightarrow  OA.OD = OB.OC\) (đpcm).

Loigiaihay.com

  • Bài 10 trang 84 SBT toán 8 tập 2

    Giải bài 10 trang 84 sách bài tập toán 8. Cho hình thang ABCD (AB // CD). Đường thẳng song song với đáy AB cắt các cạnh bên và các đường chéo AD, BD, AC và BC theo thứ tự tại các điểm M, N, P, Q (h.9)

  • Bài 11 trang 85 SBT toán 8 tập 2

    Giải bài 11 trang 85 sách bài tập toán 8. Cho hình thang ABCD (AB // CD). Trên cạnh bên AD lấy điểm E sao cho AE/ED = p/q ...

  • Bài 12 trang 85 SBT toán 8 tập 2

    Giải bài 12 trang 85 sách bài tập toán 8. Hình thang cân ABCD (AB // CD) có hai đường chéo AC và BD cắt nhau tại O (h.11)...

  • Bài 13 trang 85 SBT toán 8 tập 2

    Giải bài 13 trang 85 sách bài tập toán 8. Cho hình thang ABCD (AB // CD, AB < CD). Gọi trung điểm của các đường chéo AC, BD thứ tự là N và M...

  • Bài 14 trang 85 SBT toán 8 tập 2

    Giải bài 14 trang 85 sách bài tập toán 8. Hình thang ABCD (AB // CD) có hai đường chéo AC và BD cắt nhau tại O...

Quảng cáo
close