Bài 57 trang 14 SBT toán 8 tập 1

Giải bài 57 trang 14 sách bài tập toán 8. Phân tích các đa thức sau thành nhân tử:...

Quảng cáo
Lựa chọn câu để xem lời giải nhanh hơn

Phân tích các đa thức sau thành nhân tử:

LG a

\(\) \({x^3} - 3{x^2} - 4x + 12\)

Phương pháp giải:

Sử dụng phương pháp nhóm các hạng tử một cách thích hợp để xuất hiện nhân tử chung.

Lời giải chi tiết:

\(\) \({x^3} - 3{x^2} - 4x + 12\) \( = \left( {{x^3} - 3{x^2}} \right) - \left( {4x - 12} \right)\)

\( = {x^2}\left( {x - 3} \right) - 4\left( {x - 3} \right)\)

\( = \left( {x - 3} \right)\left( {{x^2} - 4} \right) \)

\(= \left( {x - 3} \right)\left( {x + 2} \right)\left( {x - 2} \right)\)

LG b

\(\) \({x^4} - 5{x^2} + 4\)

Phương pháp giải:

Sử dụng phương pháp tách một hạng tử thành nhiều hạng tử rồi nhóm các hạng tử một cách thích hợp để xuất hiện nhân tử chung

Lời giải chi tiết:

\(\) \({x^4} - 5{x^2} + 4\)

\( = {x^4} - 4{x^2} - {x^2} + 4 \)

\(= \left( {{x^4} - 4{x^2}} \right) - \left( {{x^2} - 4} \right)\)

\( = {x^2}\left( {{x^2} - 4} \right) - \left( {{x^2} - 4} \right) \)

\(= \left( {{x^2} - 4} \right)\left( {{x^2} - 1} \right)\)

\( = \left( {x + 2} \right)\left( {x - 2} \right)\left( {x + 1} \right)\left( {x - 1} \right)\)

LG c

\(\) \({\left( {x + y + z} \right)^3} - {x^3} - {y^3} - {z^3}\)

Phương pháp giải:

Sử dụng hằng đẳng thức: \( (A+B)^3=A^3+3A^2.B+3A.B^2+B^3\)

Lời giải chi tiết:

\(\) \({\left( {x + y + z} \right)^3} - {x^3} - {y^3} - {z^3}\)

\( = {\left[ {\left( {x + y} \right) + z} \right]^3} - {x^3} - {y^3} - {z^3}\)

\( = {\left( {x + y} \right)^3} + 3{\left( {x + y} \right)^2}z\)\( + 3\left( {x + y} \right){z^2} + {z^3} - {x^3} - {y^3} - {z^3}\)

\(= {x^3} + {y^3} + 3x^2y+3xy^2 + 3{\left( {x + y} \right)^2}z\)\(+ 3\left( {x + y} \right){z^2} - {x^3} - {y^3} \)

\(= {x^3} + {y^3} + 3xy\left( {x + y} \right) + 3{\left( {x + y} \right)^2}z\)\(+ 3\left( {x + y} \right){z^2} - {x^3} - {y^3} \)

\(=  3xy\left( {x + y} \right) + 3{\left( {x + y} \right)^2}z\)\(+ 3\left( {x + y} \right){z^2}\)

\(= 3\left( {x + y} \right)\left[ {xy + \left( {x + y} \right)z + {z^2}} \right] \)

\(= 3\left( {x + y} \right)\left[ {xy + xz + yz + {z^2}} \right] \)

\( = 3\left( {x + y} \right)\left[ {x\left( {y + z} \right) + z\left( {y + z} \right)} \right]\)

\( = 3\left( {x + y} \right)\left( {y + z} \right)\left( {x + z} \right) \)

Loigiaihay.com

Quảng cáo

Tham Gia Group Dành Cho 2K11 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close