Giải bài 4.22 trang 70 SGK Toán 10 – Kết nối tri thứcTìm điều kiện của u.v để: a) u.v = |u|.|v| b) u.v = -|u|.|v| Quảng cáo
Đề bài Tìm điều kiện của \(\overrightarrow u ,\;\overrightarrow v \) để: a) \(\overrightarrow u .\;\overrightarrow v = \left| {\overrightarrow u } \right|.\;\left| {\overrightarrow v } \right|\) b) \(\overrightarrow u .\;\overrightarrow v = - \left| {\overrightarrow u } \right|.\;\left| {\overrightarrow v } \right|\) Phương pháp giải - Xem chi tiết Tích vô hướng \(\overrightarrow u .\;\overrightarrow v = \left| {\overrightarrow u } \right|.\;\left| {\overrightarrow v } \right|.\cos \left( {\overrightarrow u ,\;\overrightarrow v } \right)\) Lời giải chi tiết a) Ta có: \(\overrightarrow u .\;\overrightarrow v = \left| {\overrightarrow u } \right|.\;\left| {\overrightarrow v } \right|.\cos \left( {\overrightarrow u ,\;\overrightarrow v } \right) = \left| {\overrightarrow u } \right|.\;\left| {\overrightarrow v } \right|\). Khi đó \( \cos \left( {\overrightarrow u ,\;\overrightarrow v } \right) = 1\) suy ra \( \left( {\overrightarrow u ,\;\overrightarrow v } \right) = {0^o}\). Nói cách khác: \(\overrightarrow u ,\;\overrightarrow v \) cùng hướng. b) Ta có: \(\overrightarrow u .\;\overrightarrow v = \left| {\overrightarrow u } \right|.\;\left| {\overrightarrow v } \right|.\cos \left( {\overrightarrow u ,\;\overrightarrow v } \right) =- \left| {\overrightarrow u } \right|.\;\left| {\overrightarrow v } \right|\). Khi đó \( \cos \left( {\overrightarrow u ,\;\overrightarrow v } \right) = - 1 \) suy ra \( \left( {\overrightarrow u ,\;\overrightarrow v } \right) = {180^o}\). Nói cách khác: \(\overrightarrow u ,\;\overrightarrow v \) ngược hướng.
Quảng cáo
|