Giải bài 4 trang 80 SGK Toán 10 tập 2 – Cánh diềuCho đường thẳng d có phương trình tổng quát là: x - 2y – 5 = 0. a) Lập phương trình tham số của đường thẳng d. b) Tìm toạ độ điểm M thuộc d sao cho OM = 5 với O là gốc toạ độ. c) Tìm toạ độ điểm N thuộc d sao cho khoảng cách từ N đến trục hoành Ox là 3. Tổng hợp đề thi học kì 1 lớp 10 tất cả các môn - Cánh diều Toán - Văn - Anh - Lí - Hóa - Sinh - Sử - Địa... Quảng cáo
Đề bài Cho đường thẳng d có phương trình tổng quát là: x - 2y – 5 = 0. a) Lập phương trình tham số của đường thẳng d. b) Tìm toạ độ điểm M thuộc d sao cho OM = 5 với O là gốc toạ độ. c) Tìm toạ độ điểm N thuộc d sao cho khoảng cách từ N đến trục hoành Ox là 3. Phương pháp giải - Xem chi tiết a) Phương trình tham số của đường thẳng\(\Delta \) đi qua điểm \({M_o}\left( {{x_o};{y_o}} \right)\) và nhận \(\overrightarrow u = \left( {{\rm{a }};{\rm{ b}}} \right)\left( {\overrightarrow u \ne 0} \right)\)làm vecto chỉ phương là: \(\left\{ \begin{array}{l}x = {x_o} + at\\y = {y_o} + bt\end{array} \right.\) ( \(t\) là tham số ) b) Tham số hóa điểm M Nếu \(A\left( {{x_1};{y_1}} \right),B\left( {{x_2};{y_2}} \right)\) thì \(AB = \left| {\overrightarrow {AB} } \right| = \sqrt {{{\left( {{x_2} - {x_1}} \right)}^2} + {{\left( {{y_2} - {y_1}} \right)}^2}} \) c) Tham số hóa điểm N rồi sử dụng giả thiết khoảng cách Lời giải chi tiết a) Từ phương trình tổng quát của đường thẳng, ta lấy được một vecto pháp tuyến là: \(\overrightarrow n = \left( {1; - 2} \right)\) nên ta chọn vecto chỉ phương của đường thẳng d là: \(\overrightarrow u = \left( {2;1} \right)\). Chọn điểm \(A\left( {1; - 2} \right) \in d\).Vậy phương trình tham số của đường thẳng d là: \(\left\{ \begin{array}{l}x = 1 + 2t\\y = - 2 + t\end{array} \right.\) (t là tham số) b) Do điểm M thuộc d nên ta có: \(M\left( {1 + 2m; - 2 + m} \right);m \in \mathbb{R}\). Ta có: \(OM = 5 \Leftrightarrow \sqrt {{{\left( {1 + 2m} \right)}^2} + {{\left( { - 2 + m} \right)}^2}} = 5 \Leftrightarrow {m^2} = 4 \Leftrightarrow m = \pm 2\) Với \(m = 2 \Rightarrow M\left( {5;0} \right)\) Với \(m = - 2 \Rightarrow M\left( { - 3; - 4} \right)\) Vậy ta có 2 điểm M thỏa mãn điều kiện đề bài. c) Do điểm N thuộc d nên ta có: \(N\left( {1 + 2n; - 2 + n} \right)\) Khoảng cách từ N đến trục hoành bằng giá trị tuyệt đối của tung độ điểm N. Do đó, khoảng cách tư N đến trục hoành bằng 3 khi và chỉ khi: \(\left| { - 2 + n} \right| = 3 \Leftrightarrow \left[ \begin{array}{l}n = 5\\n = - 1\end{array} \right.\) Với \(n = 5 \Rightarrow N\left( {11;3} \right)\) Với \(n = - 1 \Rightarrow N\left( { - 1; - 3} \right)\) Vậy có 2 điểm N thỏa mãn bài toán
Quảng cáo
|