Bài 33 trang 33 SBT toán 8 tập 1Giải bài 33 trang 33 sách bài tập toán 8.Tính tích x, y , biết rằng x và y thỏa mãn các đẳng thức sau (a, b là các hằng số):... Quảng cáo
Lựa chọn câu để xem lời giải nhanh hơn
Tính tích \(x,\, y\) , biết rằng \(x\) và \(y\) thỏa mãn các đẳng thức sau (\(a,\, b\) là các hằng số) : Chú ý rằng: \(\displaystyle{a^2} + ab + {b^2} = {a^2} + 2a.{b \over 2} + {{{b^2}} \over 4} + {{3{b^2}} \over 4} \) \(\displaystyle = {\left( {a + {b \over 2}} \right)^2} + {{3{b^2}} \over 4} \ge 0\). Do đó nếu \(a ≠ 0\) hoặc \(b ≠ 0\) thì \(\displaystyle{a^2} + ab + {b^2} > 0\) LG a \(\displaystyle\left( {4{a^2} - 9} \right)x = 4a + 4\) với \(\displaystyle a ≠ \pm {3 \over 2}\) và \(\displaystyle\left( {3{a^3} + 3} \right)y = 6{a^2} + 9a\) với \(\displaystyle a ≠ − 1\). Phương pháp giải: Muốn nhân hai phân thức, ta nhân các tử thức với nhau, nhân các mẫu thức với nhau. Với \(B,D\ne 0\) ta có: \(\dfrac{A}{B}.\dfrac{C}{D} = \dfrac{{A.C}}{{B.D}}\) Lời giải chi tiết: Vì \(a ≠ \displaystyle \pm {3 \over 2}\) nên \(\displaystyle4{a^2} - 9 \ne 0 \) \(\displaystyle\Rightarrow x = {{4a + 4} \over {4{a^2} - 9}}\) Vì \(a ≠ − 1\) nên \(\displaystyle3{a^3} + 3 \ne 0 \) \(\displaystyle \Rightarrow y = {{6{a^2} + 9a} \over {3{a^3} + 3}}\) Do đó: \(\displaystyle xy = {{4a + 4} \over {4{a^2} - 9}}.{{6{a^2} + 9a} \over {3{a^3} + 3}} \) \(\displaystyle = {{\left( {4a + 4} \right).\left( {6a^2 + 9a} \right)} \over {\left( {4a^2 - 9} \right)\left( {{3a^3} + 3} \right)}}\) \(\displaystyle = {{4\left( {a + 1} \right).3a\left( {2a + 3} \right)} \over {\left( {2a + 3} \right)\left( {2a - 3} \right).3\left( {{a^3} + 1} \right)}}\) \(\displaystyle = {{4a\left( {a + 1} \right)} \over {\left( {2a - 3} \right)\left( {a + 1} \right)\left( {{a^2} - a + 1} \right)}} \) \(\displaystyle= {{4a} \over {\left( {2a - 3} \right)\left( {{a^2} - a + 1} \right)}}\) LG b \(\displaystyle\left( {2{a^3} - 2{b^3}} \right)x - 3b = 3a\) với \(\displaystyle a ≠ b\) và \(\displaystyle\left( {6a + 6b} \right)y = {\left( {a - b} \right)^2}\) với \(\displaystyle a ≠ − b\). Chú ý rằng: \(\displaystyle{a^2} + ab + {b^2} = {a^2} + 2a.{b \over 2} + {{{b^2}} \over 4} + {{3{b^2}} \over 4} \) \(\displaystyle = {\left( {a + {b \over 2}} \right)^2} + {{3{b^2}} \over 4} \ge 0\). Do đó nếu \(a ≠ 0\) hoặc \(b ≠ 0\) thì \(\displaystyle{a^2} + ab + {b^2} > 0\) Phương pháp giải: Muốn nhân hai phân thức, ta nhân các tử thức với nhau, nhân các mẫu thức với nhau. Với \(B,D\ne 0\) ta có: \(\dfrac{A}{B}.\dfrac{C}{D} = \dfrac{{A.C}}{{B.D}}\) Lời giải chi tiết: Vì \(a ≠ b\) nên \(\displaystyle 2{a^3} - 2{b^3} \ne 0 \) \(\displaystyle \Rightarrow x = {{3a + 3b} \over {2{a^3} - 2{b^3}}}\) Vì \(a ≠ − b\) nên \(\displaystyle 6a + 6b \ne 0 \) \(\displaystyle \Rightarrow y = {{{{\left( {a - b} \right)}^2}} \over {6a + 6b}}\) Do đó : \(\displaystyle xy = {{3a + 3b} \over {2{a^3} - 2{b^3}}}.{{{{\left( {a - b} \right)}^2}} \over {6a + 6b}} \) \(\displaystyle = {{3\left( {a + b} \right){{\left( {a - b} \right)}^2}} \over {2\left( {{a^3} - {b^3}} \right).6\left( {a + b} \right)}}\) \(\displaystyle = {{{{\left( {a - b} \right)}^2}} \over {4\left( {a - b} \right)\left( {{a^2} + ab + {b^2}} \right)}} \) \(\displaystyle= {{a - b} \over {4\left( {{a^2} + ab + {b^2}} \right)}}\) Loigiaihay.com
Quảng cáo
|