Lý thuyết Tứ giác nội tiếp đường tròn Toán 9 Cánh diều1. Đường tròn ngoại tiếp của một tứ giác Định nghĩa đường tròn ngoại tiếp tứ giác Tứ giác có bốn đỉnh thuộc một đường tròn được gọi là tứ giác nội tiếp đường tròn (hay còn gọi là tứ giác nội tiếp). Quảng cáo
1. Đường tròn ngoại tiếp của một tứ giác Định nghĩa đường tròn ngoại tiếp tứ giác
Ví dụ: Tứ giác ABCD là tứ giác nội tiếp và đường tròn (O) được gọi là đường tròn ngoại tiếp tứ giác ABCD. Tính chất
Ví dụ: Tứ giác ABCD nội tiếp (O) nên \(\widehat A + \widehat C = 180^\circ ;\widehat B + \widehat D = 180^\circ \). 2. Hình chữ nhật, hình vuông nội tiếp đường tròn Hình chữ nhật nội tiếp đường tròn
Hình vuông nội tiếp đường tròn
Ví dụ: Áp dụng định lí Pythagore cho tam giác ABD vuông tại A, ta có: \(B{D^2} = A{B^2} + A{D^2} = {3^2} + {4^2} = 25\) nên \(BD = 5cm\). Do đó, ta có \(R = \frac{{BD}}{2} = 2,5cm\). Đường tròn (O;2,5) là đường tròn ngoại tiếp hình chữ nhật ABCD.
Quảng cáo
|