Lý thuyết Bất phương trình bậc nhất một ẩn Toán 9 Cánh diều

1. Mở đầu về bất phương trình bậc nhất một ẩn Một bất phương trình với ẩn x có dạng (hoặc ) trong đó vế trái và vế phải là hai biểu thức của cùng một biến x.

Quảng cáo

1. Mở đầu về bất phương trình bậc nhất một ẩn

Một bất phương trình với ẩn x có dạng \(A\left( x \right) > B\left( x \right)\) (hoặc \(A\left( x \right) < B\left( x \right),A\left( x \right) \ge B\left( x \right),A\left( x \right) \le B\left( x \right)\)) trong đó vế trái \(A\left( x \right)\) và vế phải \(B\left( x \right)\) là hai biểu thức của cùng một biến x.

Nghiệm của bất phương trình

Khi thay giá trị \(x = a\) vào bất phương trình với ẩn x, ta được một khẳng định đúng thì số a (hay giá trị \(x = a\)) gọi là nghiệm của bất phương trình đó.

Giải bất phương trình là tìm tất cả các nghiệm của bất phương trình đó.

Ví dụ:

Số -2 là nghiệm của bất phương trình \(2x - 10 < 0\) vì \(2.\left( { - 2} \right) - 10 =  - 4 - 10 =  - 14 < 0\).

Số 6 không là nghiệm của bất phương trình \(2x - 10 < 0\) vì \(2.6 - 10 = 12 - 10 = 2 > 0\).

2. Bất phương trình bậc nhất một ẩn

Định nghĩa

Bất phương trình dạng \(ax + b > 0\) (hoặc \(ax + b < 0,ax + b \ge 0,ax + b \le 0\)) với a, b là hai số đã cho và \(a \ne 0\) được gọi là bất phương trình bậc nhất một ẩn.

Ví dụ: \(3x + 16 \le 0\); \( - 3x > 0\) là các bất phương trình bậc nhất một ẩn x.

\({x^2} - 4 \ge 0\) không phải là một bất phương trình bậc nhất một ẩn x vì \({x^2} - 4\) là một đa thức bậc hai.

\(3x - 2y < 2\) không phải là một bất phương trình bậc nhất một ẩn vì đa thức \(3x - 2y\) là đa thức với hai biến x và y.

Cách giải

Bất phương trình bậc nhất một ẩn \(ax + b > 0\) (với \(a > 0\)) được giải như sau:

\(\begin{array}{l}ax + b > 0\\ax >  - b\\x > \frac{{ - b}}{a}.\end{array}\)

Vậy nghiệm của bất phương trình đã cho là \(x > \frac{{ - b}}{a}\).

Bất phương trình bậc nhất một ẩn \(ax + b > 0\) (với \(a < 0\)) được giải như sau:

\(\begin{array}{l}ax + b > 0\\ax >  - b\\x < \frac{{ - b}}{a}.\end{array}\)

Vậy nghiệm của bất phương trình đã cho là \(x < \frac{{ - b}}{a}\).

Chú ý: Các bất phương trình \(ax + b < 0\), \(ax + b \le 0\), \(ax + b \ge 0\) với a, b là hai số đã cho và \(a \ne 0\) được giải bằng cách tương tự.

Ví dụ: Giải bất phương trình \( - 2x - 4 > 0\)

Lời giải: Ta có:

\(\begin{array}{l} - 2x - 4 > 0\\ - 2x > 0 + 4\\ - 2x > 4\\x < 4.\left( { - \frac{1}{2}} \right)\\x <  - 2\end{array}\)

Vậy nghiệm của bất phương trình là \(x <  - 2\).

Chú ý: Ta cũng có thể giải được các bất phương trình dạng \(ax + b > cx + d;ax + b < cx + d;ax + b \ge cx + d;ax + b \le cx + d\) bằng cách đưa bất phương trình về dạng \(ax + b < 0\), \(ax + b > 0\), \(ax + b \le 0\), \(ax + b \ge 0\).

Quảng cáo

Tham Gia Group 2K10 Ôn Thi Vào Lớp 10 Miễn Phí

close