Giải mục 3 trang 60, 61 SGK Toán 9 tập 1 - Cùng khám phá

Hãy chép lại và hoàn thành Bảng 3.2. Em có nhận xét gì về giá trị của \(\sqrt {\left( {x + 1} \right)\left( {x + 3} \right)} \) và \(\sqrt {x + 1} .\sqrt {x + 3} \)?

Quảng cáo
Lựa chọn câu để xem lời giải nhanh hơn

HĐ3

Trả lời câu hỏi Hoạt động 3 trang 60 SGK Toán 9 Cùng khám phá

Hãy chép lại và hoàn thành Bảng 3.2. Em có nhận xét gì về giá trị của \(\sqrt {\left( {x + 1} \right)\left( {x + 3} \right)} \) và \(\sqrt {x + 1} .\sqrt {x + 3} \)?

Phương pháp giải:

Thay từng giá trị của x vào các căn thức \(\sqrt {\left( {x + 1} \right)\left( {x + 3} \right)} \) và \(\sqrt {x + 1} .\sqrt {x + 3} \) để tính giá trị tương ứng, từ đó rút ra nhận xét.

Lời giải chi tiết:

Ta thấy: \(\sqrt {\left( {x + 1} \right)\left( {x + 3} \right)}  = \sqrt {x + 1} .\sqrt {x + 3} \).

LT3

Trả lời câu hỏi Luyện tập 3 trang 61 SGK Toán 9 Cùng khám phá

Rút gọn các biểu thức sau:

a) \(\sqrt {36{x^8}{{\left( {2 - y} \right)}^2}} \) với \(y \ge 2\);

b) \(\sqrt {\frac{{7z}}{3}} .\sqrt {\frac{3}{{28z}}} \) với \(z > 0\).

Phương pháp giải:

Với hai biểu thức A và B không âm, ta có: \(\sqrt {A.B}  = \sqrt A .\sqrt B \).

Lời giải chi tiết:

a) \(\sqrt {36{x^8}{{\left( {2 - y} \right)}^2}} \)\( = \sqrt {36} .\sqrt {{x^8}} .\sqrt {{{\left( {2 - y} \right)}^2}} \)\( = 6.\sqrt {{{\left( {{x^4}} \right)}^2}} .\left| {2 - y} \right|\)\( = 6{x^4}\left( {y - 2} \right)\) (vì \(y \ge 2\) nên \(2 - y \le 0\))

b) \(\sqrt {\frac{{7z}}{3}} .\sqrt {\frac{3}{{28z}}} \)\( = \sqrt {\frac{{7z}}{3}.\frac{3}{{28z}}} \)\( = \sqrt {\frac{1}{4}} \)\( = \sqrt {{{\left( {\frac{1}{2}} \right)}^2}} \)\( = \frac{1}{2}\).

VD1

Trả lời câu hỏi Vận dụng 1 trang 61 SGK Toán 9 Cùng khám phá

Một hình chữ nhật có chiều dài là \(\sqrt {\frac{a}{3}} \) mét và chiều rộng là \(\sqrt {\frac{a}{{12}}} \) (mét) \(\left( {a > 0} \right)\). Tính diện tích của hình chữ nhật theo a.

Phương pháp giải:

+ Với hai biểu thức A và B không âm, ta có: \(\sqrt {A.B}  = \sqrt A .\sqrt B \).

+ Diện tích hình chữ nhật bằng chiều dài nhân chiều rộng.

Lời giải chi tiết:

Diện tích của hình chữ nhật là:

\(\sqrt {\frac{a}{3}} .\sqrt {\frac{a}{{12}}}  = \sqrt {\frac{a}{3}.\frac{a}{{12}}}  = \sqrt {\frac{{{a^2}}}{{36}}}  = \sqrt {{{\left( {\frac{a}{6}} \right)}^2}}  = \left| {\frac{a}{6}} \right| = \frac{a}{6}\) (do \(a > 0\) nên \(\frac{a}{6} > 0\)).

  • Giải mục 4 trang 61, 62 SGK Toán 9 tập 1 - Cùng khám phá

    Cho biểu thức A không âm và biểu thức B dương. a) Giải thích vì sao \(\sqrt {\frac{A}{B}} .\sqrt B = \sqrt A \). b) Chứng minh \(\sqrt {\frac{A}{B}} = \frac{{\sqrt A }}{{\sqrt B }}\).

  • Giải mục 5 trang 62, 63, 64 SGK Toán 9 tập 1 - Cùng khám phá

    a) Nhân cả tử và mẫu của biểu thức \(\frac{4}{{3\sqrt 2 }}\) với \(\sqrt 2 \) rồi biến đổi biểu thức đó về dạng không còn căn thức ở mẫu. b) Nhân cả tử và mẫu của biểu thức \(\frac{5}{{\sqrt 2 + 1}}\) với \(\sqrt 2 - 1\) rồi biến đổi biểu thức đó về dạng không còn căn thức ở mẫu. c) Nhân cả tử và mẫu của biểu thức \(\frac{6}{{\sqrt 5 - \sqrt 2 }}\) với \(\sqrt 5 + \sqrt 2 \) rồi biến đổi biểu thức đó về dạng không còn căn thức ở mẫu.

  • Giải bài tập 3.13 trang 64 SGK Toán 9 tập 1 - Cùng khám phá

    Rút gọn các biểu thức sau: a) \(\sqrt {25{a^4}} - 2{a^2}\); b) \(3\sqrt {4{b^6}} + 7{b^3}\) với \(b < 0\); c) \(\frac{1}{{x - y}}\sqrt {{x^4}{{\left( {x - y} \right)}^2}} \) với \(x > y\); d) \(\sqrt {0,3} .\sqrt {270{z^2}} \).

  • Giải bài tập 3.14 trang 64 SGK Toán 9 tập 1 - Cùng khám phá

    Rút gọn rồi tính giá trị các biểu thức sau: a) \(\sqrt {9{{\left( {4 - 4x + {x^2}} \right)}^2}} \) tại \(x = \sqrt 2 \); b) \(\sqrt {4{a^2}{{\left( {9{b^2} + 6b + 1} \right)}^2}} \) tại \(a = - 2,b = - \sqrt 3 \); c) \({a^2}{b^2}.\sqrt {\frac{{9{b^4}}}{{25{a^6}}}} \) tại \(a = - 3,b = \sqrt 5 \); d) \(\frac{{\sqrt {3{x^6}{y^4}} }}{{\sqrt {27{x^2}{y^2}} }}\) tại \(x = - 3,y = \sqrt 5 \).

  • Giải bài tập 3.15 trang 64 SGK Toán 9 tập 1 - Cùng khám phá

    Tìm x, biết: a) \(\sqrt 3 x - \sqrt {48} = 0\); b) \(2\sqrt 5 x + \sqrt {80} = \sqrt {125} - \sqrt {45} \).

Quảng cáo

Tham Gia Group 2K10 Ôn Thi Vào Lớp 10 Miễn Phí

close