Giải bài tập 9.19 trang 83 SGK Toán 9 tập 2 - Kết nối tri thứcCho điểm I nằm ngoài đường tròn (O). Qua I kẻ hai đường thẳng lần lượt cắt (O) tại bốn điểm A, B và C, D sao cho A nằm giữa B và I, C nằm giữa D và I. Chứng minh rằng (widehat {IBD} = widehat {ICA},widehat {IAC} = widehat {IDB}) và (IA.IB = IC.ID). Quảng cáo
Đề bài Cho điểm I nằm ngoài đường tròn (O). Qua I kẻ hai đường thẳng lần lượt cắt (O) tại bốn điểm A, B và C, D sao cho A nằm giữa B và I, C nằm giữa D và I. Chứng minh rằng \(\widehat {IBD} = \widehat {ICA},\widehat {IAC} = \widehat {IDB}\) và \(IA.IB = IC.ID\). Video hướng dẫn giải Phương pháp giải - Xem chi tiết + Chứng minh \(\widehat {ABD} + \widehat {ACD} = {180^o}\), mà \(\widehat {ICA} + \widehat {ACD} = {180^o}\) nên \(\widehat {IBD} = \widehat {ICA}\). + Chứng minh \(\widehat {CAB} + \widehat {CDB} = {180^o}\), mà \(\widehat {CAB} + \widehat {IAC} = {180^o}\) nên \(\widehat {IAC} = \widehat {IDB}\). + Chứng minh $\Delta IAC\backsim \Delta IDB\Rightarrow \frac{IA}{IC}=\frac{ID}{IB}\Rightarrow IA.IB=IC.ID$. Lời giải chi tiết Tứ giác ABDC nội tiếp (O) nên \(\widehat {ABD} + \widehat {ACD} = {180^o}\), mà \(\widehat {ICA} + \widehat {ACD} = {180^o}\) (hai góc kề bù) nên \(\widehat {IBD} = \widehat {ICA}\) Tứ giác ABDC nội tiếp (O) nên\(\widehat {CAB} + \widehat {CDB} = {180^o}\), mà \(\widehat {CAB} + \widehat {IAC} = {180^o}\) (hai góc kề bù) nên \(\widehat {IAC} = \widehat {IDB}\) Tam giác IAC và tam giác IDB có: Góc I chung \(\widehat {ICA} = \widehat {IBD}\) (cmt). Do đo, $\Delta IAC\backsim \Delta IDB\Rightarrow \frac{IA}{IC}=\frac{ID}{IB}\Rightarrow IA.IB=IC.ID$.
Quảng cáo
|