-
Bài 5.28 trang 109
Cho hai đường thẳng a và b song song với nhau, điểm O nằm trong phần mặt phẳng ở giữa hai đường thẳng đó. Biết rằng khoảng cách từ O đến a và b lần lượt bằng 2 cm và 3 cm. a) Hỏi bán kính của đường tròn (O; R) phải thỏa mãn điều kiện gì để (O; R) cắt cả hai đường thẳng a và b? b) Biết rằng đường tròn (O; R) tiếp xúc với đường thẳng a. Hãy xác định vị trí tương đối của đường tròn (O; R) và đường thẳng b.
Xem chi tiết -
Bài 5.29 trang 110
Khi chuyển động, giả sử đầu mũi kim dài của một chiếc đồng hồ vạch nên một đường tròn, kí hiệu là (T1), trong khi đầu mũi kim ngắn vạch nên một đường tròn khác, kí hiệu là (T2). a) Hai đường tròn (T1) và (T2) có vị trí tương đối như thế nào? b) Giả sử bán kính của (T1) và (T2) lần lượt là R1 và R2. Người ta vẽ trên mặt đồng hồ một họa tiết hình tròn có tâm nằm cách điểm trục kim đồng hồ một khoảng bằng (frac{1}{2}{{rm{R}}_1}) và có bán kính bằng (frac{1}{2}{{rm{R}}_2}). Hãy cho biết vị
Xem chi tiết -
Bài 5.30 trang 110
Cho đường tròn (O) đường kính AB, tiếp tuyến xx’ tại A và tiếp tuyến yy’ tại B của (O). Một tiếp tuyến thứ ba của (O) tại điểm P (khác A và B) cắt xx’ tại M và cắt yy’ tại N. a) Chứng minh rằng MN = MA + NB. b) Đường thẳng đi qua O và vuông góc với AB cắt NM tại Q. Chứng minh rằng Q là trung điểm của đoạn MN. c) Chứng minh rằng AB tiếp xúc với đường tròn đường kính MN.
Xem chi tiết -
Bài 5.31 trang 110
Cho đường tròn (O) và (O’) tiếp xúc ngoài với nhau tại A và cùng tiếp xúc với đường thẳng d tại B và C (khác A), trong đó({rm{B}} in left( {rm{O}} right))và ({rm{C}} in left( {{rm{O'}}} right)). Tiếp tuyến của (O) tại A cắt BC tại M. Chứng minh rằng: a) Đường thẳng MA tiếp xúc với (O’); b) Điểm M là trung điểm của đoạn thẳng BC, từ đó suy ra ABC là tam giác vuông.
Xem chi tiết