Giải bài tập 5.30 trang 110 SGK Toán 9 tập 1 - Kết nối tri thức

Cho đường tròn (O) đường kính AB, tiếp tuyến xx’ tại A và tiếp tuyến yy’ tại B của (O). Một tiếp tuyến thứ ba của (O) tại điểm P (khác A và B) cắt xx’ tại M và cắt yy’ tại N. a) Chứng minh rằng MN = MA + NB. b) Đường thẳng đi qua O và vuông góc với AB cắt NM tại Q. Chứng minh rằng Q là trung điểm của đoạn MN. c) Chứng minh rằng AB tiếp xúc với đường tròn đường kính MN.

Tổng hợp đề thi học kì 1 lớp 9 tất cả các môn - Kết nối tri thức

Toán - Văn - Anh - KHTN - Lịch sử và Địa lí

Quảng cáo

Đề bài

Cho đường tròn (O) đường kính AB, tiếp tuyến xx’ tại A và tiếp tuyến yy’ tại B của (O). Một tiếp tuyến thứ ba của (O) tại điểm P (khác A và B) cắt xx’ tại M và cắt yy’ tại N.

a) Chứng minh rằng MN = MA + NB.

b) Đường thẳng đi qua O và vuông góc với AB cắt NM tại Q. Chứng minh rằng Q là trung điểm của đoạn MN.

c) Chứng minh rằng AB tiếp xúc với đường tròn đường kính MN.

Video hướng dẫn giải

Phương pháp giải - Xem chi tiết

a) Áp dụng tính chất của hai tiếp tuyến cắt nhau.

b) Gọi K là giao điểm của AN và OQ, áp dụng tính chất đường trung bình cho hai tam giác ABN và AMN.

c) Áp dụng tính chất đường trung bình và câu a suy ra

\({\rm{OQ}} = \frac{1}{2}{\rm{MN}}\)nên O thuộc đường tròn đường kính MN, từ đó ta có AB là tiếp tuyến tại M.

Lời giải chi tiết

a) MA và MP là hai tiếp tuyến cắt nhau của (O) nên MA = MP

NB và NP là hai tiếp tuyến cắt nhau của (O) nên NB = NP

Ta có: MN = MP + NP = MA + NB

b) Gọi K là giao điểm của AN và OQ.

Ta có: \({\rm{BN//OK}}\) (vì cùng vuông góc với AB) và O là trung điểm của AB.

Suy ra OK là đường trung bình của tam giác ABN.

Do đó K là trung điểm của AN.

Lại có: \({\rm{AM//QK}}\) (vì cùng vuông góc với AB) và K là trung điểm của AN.

Suy ra QK là đường trung bình của tam giác AMN.

Do đó Q là trung điểm của MN.

c) OK là đường trung bình của tam giác ABN nên \({\rm{OK}} = \frac{1}{2}{\rm{NB}}\)

QK là đường trung bình của tam giác AMN nên \({\rm{QK}} = \frac{1}{2}{\rm{MA}}\)

Suy ra: \({\rm{OQ}} = {\rm{OK}} + {\rm{QK}} = \frac{1}{2}{\rm{NB}} + \frac{1}{2}{\rm{MA}} = \frac{1}{2}{\rm{MN}}\)

hay \({\rm{OQ}} = {\rm{AQ}} = {\rm{BQ}}\)

Do đó O thuộc đường tròn đường kính MN.

Mà OQ vuông góc với AB tại O nên AB là tiếp của đường tròn đường kính MN.

  • Giải bài tập 5.31 trang 110 SGK Toán 9 tập 1 - Kết nối tri thức

    Cho đường tròn (O) và (O’) tiếp xúc ngoài với nhau tại A và cùng tiếp xúc với đường thẳng d tại B và C (khác A), trong đó({rm{B}} in left( {rm{O}} right))và ({rm{C}} in left( {{rm{O'}}} right)). Tiếp tuyến của (O) tại A cắt BC tại M. Chứng minh rằng: a) Đường thẳng MA tiếp xúc với (O’); b) Điểm M là trung điểm của đoạn thẳng BC, từ đó suy ra ABC là tam giác vuông.

  • Giải bài tập 5.29 trang 110 SGK Toán 9 tập 1 - Kết nối tri thức

    Khi chuyển động, giả sử đầu mũi kim dài của một chiếc đồng hồ vạch nên một đường tròn, kí hiệu là (T1), trong khi đầu mũi kim ngắn vạch nên một đường tròn khác, kí hiệu là (T2). a) Hai đường tròn (T1) và (T2) có vị trí tương đối như thế nào? b) Giả sử bán kính của (T1) và (T2) lần lượt là R1 và R2. Người ta vẽ trên mặt đồng hồ một họa tiết hình tròn có tâm nằm cách điểm trục kim đồng hồ một khoảng bằng (frac{1}{2}{{rm{R}}_1}) và có bán kính bằng (frac{1}{2}{{rm{R}}_2}). Hãy cho biết vị

  • Giải bài tập 5.28 trang 109 SGK Toán 9 tập 1 - Kết nối tri thức

    Cho hai đường thẳng a và b song song với nhau, điểm O nằm trong phần mặt phẳng ở giữa hai đường thẳng đó. Biết rằng khoảng cách từ O đến a và b lần lượt bằng 2 cm và 3 cm. a) Hỏi bán kính của đường tròn (O; R) phải thỏa mãn điều kiện gì để (O; R) cắt cả hai đường thẳng a và b? b) Biết rằng đường tròn (O; R) tiếp xúc với đường thẳng a. Hãy xác định vị trí tương đối của đường tròn (O; R) và đường thẳng b.

Quảng cáo

Tham Gia Group 2K10 Ôn Thi Vào Lớp 10 Miễn Phí

close