Giải bài tập 4 trang 64 SGK Toán 9 tập 2 - Cánh diềuCho phương trình (2{x^2} - 3x - 6 = 0). a) Chứng minh phương trình có 2 nghiệm phân biệt ({x_1},{x_2}.) b) Tính ({x_1} + {x_2};{x_1}.{x_2}). Chứng minh cả 2 nghiệm ({x_1},{x_2}) đều khác 0. c) Tính (frac{1}{{{x_1}}} + frac{1}{{{x_2}}}) d) Tính ({x_1}^2 + {x_2}^2) e) Tính (left| {{x_1} - {x_2}} right|.) Tổng hợp đề thi giữa kì 1 lớp 9 tất cả các môn - Cánh diều Toán - Văn - Anh - Khoa học tự nhiên Quảng cáo
Đề bài Cho phương trình \(2{x^2} - 3x - 6 = 0\). a) Chứng minh phương trình có 2 nghiệm phân biệt \({x_1},{x_2}.\) b) Tính \({x_1} + {x_2};{x_1}.{x_2}\). Chứng minh cả 2 nghiệm \({x_1},{x_2}\) đều khác 0. c) Tính \(\frac{1}{{{x_1}}} + \frac{1}{{{x_2}}}\) d) Tính \({x_1}^2 + {x_2}^2\) e) Tính \(\left| {{x_1} - {x_2}} \right|.\) Video hướng dẫn giải Phương pháp giải - Xem chi tiết a) Chứng minh\(\Delta > 0\). b) Áp dụng định lý Viète. c),d),e) biến đổi biểu thức để đưa làm xuất hiện \({x_1} + {x_2};{x_1}.{x_2}\). Lời giải chi tiết a) Phương trình có các hệ số \(a = 2;b = - 3;c = - 6\). \(\Delta = {( - 3)^2} - 4.2.( - 6) = 57 > 0\) Vậy phương trình luôn có 2 nghiệm phân biệt. b) Áp dụng định lý Viète, ta có: \({x_1} + {x_2} = \frac{{ - ( - 3)}}{2} = \frac{3}{2};{x_1}.{x_2} = \frac{{ - 6}}{2} = - 3.\) Vì \({x_1}.{x_2} = - 3 < 0\) nên phương trình có 2 nghiệm trái dấu. Vậy cả 2 nghiệm đều khác 0. c) \(\frac{1}{{{x_1}}} + \frac{1}{{{x_2}}} = \frac{{{x_1} + {x_2}}}{{{x_1}.{x_2}}} = \frac{3}{2}:\left( { - 3} \right) = \frac{{ - 1}}{2}.\) d) \({x_1}^2 + {x_2}^2 = {\left( {{x_1} + {x_2}} \right)^2} - 2{x_1}{x_2} = {\left( {\frac{3}{2}} \right)^2} - 2.\left( { - 3} \right) = \frac{{33}}{4}.\) e) Xét \({\left( {\left| {{x_1} - {x_2}} \right|} \right)^2} = {x_1}^2 + {x_2}^2 - 2{x_1}{x_2} = {\left( {{x_1} + {x_2}} \right)^2} - 4{x_1}{x_2} \) \(= {\left( {\frac{3}{2}} \right)^2} - 4.\left( { - 3} \right) = \frac{{57}}{4}.\) Vậy \(\left| {{x_1} - {x_2}} \right| = \sqrt {{{\left| {{x_1} - {x_2}} \right|}^2}} = \frac{{\sqrt {57} }}{2}.\)
Quảng cáo
|