Giải bài tập 3 trang 59 SGK Toán 9 tập 1 - Cánh diềuÁp dụng quy tắc về căn bậc hai của một thương, hãy tính: a. (sqrt {frac{{49}}{{36}}} ) b. (sqrt {frac{{{{13}^2} - {{12}^2}}}{{81}}} ) c. (frac{{sqrt {{9^3} + {7^3}} }}{{sqrt {{9^2} - 9.7 + {7^2}} }}) d. (frac{{sqrt {{{50}^3} - 1} }}{{sqrt {{{50}^2} + 51} }}) Quảng cáo
Đề bài Áp dụng quy tắc về căn bậc hai của một thương, hãy tính: a. \(\sqrt {\frac{{49}}{{36}}} \) b. \(\sqrt {\frac{{{{13}^2} - {{12}^2}}}{{81}}} \) c. \(\frac{{\sqrt {{9^3} + {7^3}} }}{{\sqrt {{9^2} - 9.7 + {7^2}} }}\) d. \(\frac{{\sqrt {{{50}^3} - 1} }}{{\sqrt {{{50}^2} + 51} }}\) Video hướng dẫn giải Phương pháp giải - Xem chi tiết Áp dụng quy tắc về căn bậc hai của một thương để tính. Lời giải chi tiết a. \(\sqrt {\frac{{49}}{{36}}} \) \(= \frac{{\sqrt {49} }}{{\sqrt {36} }} \) \(= \frac{7}{6}\). b. \(\sqrt {\frac{{{{13}^2} - {{12}^2}}}{{81}}} \) \(= \sqrt {\frac{{\left( {13 - 12} \right)\left( {13 + 12} \right)}}{{81}}} \) \(= \frac{{\sqrt {1.25} }}{{\sqrt {81} }} \) \(= \frac{5}{9}\). c. \(\frac{{\sqrt {{9^3} + {7^3}} }}{{\sqrt {9{}^2 - 9.7 + {7^2}} }} \) \(= \frac{{\sqrt {\left( {9 + 7} \right)\left( {{9^2} - 9.7 + {7^2}} \right)} }}{{\sqrt {{9^2} - 9.7 + {7^2}} }} \) \(= \frac{{\sqrt {9 + 7} .\sqrt {{9^2} - 9.7 + {7^2}} }}{{\sqrt {{9^2} - 9.7 + {7^2}} }} \) \(= \sqrt {16} \) \(= 4\). d. \(\frac{{\sqrt {{{50}^3} - 1} }}{{\sqrt {{{50}^2} + 51} }} \) \(= \frac{{\sqrt {\left( {50 - 1} \right)\left( {{{50}^2} + 50.1 + {1^2}} \right)} }}{{\sqrt {{{50}^2} + 51} }} \) \(= \frac{{\sqrt {49} .\sqrt {{{50}^2} + 51} }}{{\sqrt {{{50}^2} + 51} }} \) \(= \sqrt {49} \) \(= 7\).
Quảng cáo
|