Giải bài tập 7 trang 60 SGK Toán 9 tập 1 - Cánh diều

Cho tam giác đều ABC có độ dài cạnh a. Tính độ dài đường cao AH của tam giác ABC theo a.

Quảng cáo

Đề bài

Cho tam giác đều ABC có độ dài cạnh a. Tính độ dài đường cao AH của tam giác ABC theo a. 

Video hướng dẫn giải

Phương pháp giải - Xem chi tiết

Kết hợp với các kiến thức hình học cùng phép tính của căn thức để giải bài toán

Lời giải chi tiết

Do AH là đường cao của tam giác đều ABC.

Suy ra AH đồng thời là đường trung tuyến của tam giác ABC.

Suy ra H là trung điểm của BC.

Suy ra \(HB = HC = \frac{1}{2}BC = \frac{1}{2}a\).

Xét tam giác AHB vuông tại H có:

\(A{H^2} + H{B^2} = A{B^2}\) (Định lý Py – ta – go)

\(\begin{array}{l}A{H^2} + {\left( {\frac{a}{2}} \right)^2} = {a^2}\\A{H^2} = {a^2} - {\left( {\frac{a}{2}} \right)^2} = {a^2} - \frac{{{a^2}}}{4} = \frac{{4{a^2}}}{4} - \frac{{{a^2}}}{4} = \frac{{3{a^2}}}{4}\\AH = \frac{{a\sqrt 3 }}{2}.\end{array}\)

Vậy  \(AH = \frac{{a\sqrt 3 }}{2}\).

  • Giải bài tập 8 trang 60 SGK Toán 9 tập 1 - Cánh diều

    Trong Vật lí, ta có định luật Joule – Lenz để tính nhiệt lượng tỏa ra ở dây dẫn khi có dòng điện chạy qua: (Q = {I^2}Rt). Trong đó: Q là nhiệt lượng tỏa ra trên dây dẫn tính theo Jun (J); I là cường độ dòng điện chạy trong dây dẫn tính theo Ampe (A); R là điện trở dây dẫn tính theo Ohm (left( Omega right)); t là thời gian dòng điện chạy qua dây dẫn tính theo giây. Áp dụng công thức trên để giải bài toán sau: Một bếp điện khi hoạt động

  • Giải bài tập 9 trang 60 SGK Toán 9 tập 1 - Cánh diều

    Tốc độ gần đúng của một ô tô ngay trước khi đạp phanh được tính theo công thức (v = sqrt {2lambda gd} ), trong đó (vleft( {m/s} right)) là tốc độ của ô tô, (dleft( m right)) là chiều dài của vết trượt tính từ thời điểm đạp phanh cho đến khi ô tô dừng lại trên đường, (lambda ) là hệ số cản lăn của mặt đường, (g = 9,8m/{s^2}). Nếu một ô tô để lại vết trượt dài khoảng 20m trên đường nhựa thì tốc độ của ô tô trước khi đạp phanh là khoảng bao nhiêu mét trên giây (làm tròn đến kết quả

  • Giải bài tập 6 trang 60 SGK Toán 9 tập 1 - Cánh diều

    So sánh: a. (sqrt 3 .sqrt 7 ) và (sqrt {22} ); b. (frac{{sqrt {52} }}{{sqrt 2 }}) và (5); c. (3sqrt 7 ) và (sqrt {65} ).

  • Giải bài tập 5 trang 59 SGK Toán 9 tập 1 - Cánh diều

    Áp dụng quy tắc đưa thừa số vào trong dấu căn bậc hai, hãy rút gọn biểu thức: a. (9sqrt {frac{2}{9}} - 3sqrt 2 ) b. (left( {2sqrt 3 + sqrt {11} } right)left( {sqrt {12} - sqrt {11} } right)) Phương pháp: Áp dụng quy tắc đưa thừa số vào trong dấu căn để xử lý bài toán.

  • Giải bài tập 4 trang 59 SGK Toán 9 tập 1 - Cánh diều

    Áp dụng quy tắc đưa thừa số ra ngoài dấu căn bậc hai, hãy rút gọn biểu thức: a. (sqrt {12} - sqrt {27} + sqrt {75} ); b. (2sqrt {80} - 2sqrt 5 - 3sqrt {20} ); c. (sqrt {2,8} .sqrt {0,7} ).

Quảng cáo

Tham Gia Group 2K10 Ôn Thi Vào Lớp 10 Miễn Phí

close