tuyensinh247

Giải bài 6.13 trang 16 SGK Toán 10 – Kết nối tri thức

Bác Hùng dùng 40 m lưới thép gai rào thành một mảnh vườn hình chữ nhật để trồng rau. a) Tính diện tích mảnh vườn hình chữ nhật rào được theo chiều rộng x (mét) của nó.

Quảng cáo

Đề bài

Bác Hùng dùng 40 m lưới thép gai rào thành một mảnh vườn hình chữ nhật để trồng rau.

a) Tính diện tích mảnh vườn hình chữ nhật rào được theo chiều rộng x (mét) của nó.

b) Tìm kích thước của mảnh vườn hình chữ nhật có diện tích lớn nhất mà bác Hùng có thể rào được.

Phương pháp giải - Xem chi tiết

Theo bài ra ta có chu vi của mảnh vườn hình chữ nhật bằng 40m

Tính được chiều dài của mảnh vườn => diện tích mảnh vườn

Lời giải chi tiết

a) Gọi chiều dài mảnh vườn là a(m)

Khi đó ta có \(2a + 2x = 40 \Leftrightarrow a = 20 - x\)

Vậy diện tích mảnh vườn hình chữ nhật là: \(S = a.x = (20 - x)x =  - {x^2} + 20x\)

b) Để diện tích mảnh vườn lớn nhất thì S phải lớn nhất:

Ta có \(S =  - {x^2} + 20x =  - ({x^2} - 20x + 100) + 100 = 100 - {(x - 10)^2} \le 100\)(vì \({(x - 10)^2} \ge 0\))

Diện tích mảnh vườn lớn nhất là 100 \(\left( {{m^2}} \right)\)khi x=10

Quảng cáo

Tham Gia Group Dành Cho 2K9 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close