Giải bài 4.9 trang 54 SGK Toán 10 tập 1 – Kết nối tri thức

Hình 4.19 biểu diễn hai lực F1, F2 cùng tác động lên một vật, cho

Quảng cáo

Đề bài

Hình 4.19 biểu diễn hai lực \(\overrightarrow {{F_1}} ,\overrightarrow {{F_2}} \) cùng tác động lên một vật, cho \(\left| {\overrightarrow {{F_1}} } \right| = 3\;N,\;\left| {\overrightarrow {{F_2}} } \right| = 2\;N.\) Tính độ lớn của hợp lực \(\overrightarrow {{F_1}}  + \overrightarrow {{F_2}} \).

Phương pháp giải - Xem chi tiết

Để tìm tổng của hai vectơ chung gốc \(\overrightarrow {AB} ,\;\overrightarrow {AD} \) ta dựng hình hình hành ABCD, khi đó:\(\overrightarrow {AB}  + \overrightarrow {AD}  = \overrightarrow {AC} \)

Lời giải chi tiết

Dựng hình bình hành ABCD với hai cạnh là hai vectơ \(\overrightarrow {{F_1}} ,\overrightarrow {{F_2}} \) như hình vẽ

 

Ta có:

\(\overrightarrow {{F_1}}  + \overrightarrow {{F_2}}  = \overrightarrow {AD}  + \overrightarrow {AB}  = \overrightarrow {AC}  \Rightarrow \left| {\overrightarrow {{F_1}}  + \overrightarrow {{F_2}} } \right| = \left| {\overrightarrow {AC} } \right| = AC\)

Xét \(\Delta ABC\) ta có:

\(BC = AD = \left| {\overrightarrow {{F_1}} } \right| = 3\;,AB = \;\left| {\overrightarrow {{F_2}} } \right| = 2\;.\)

\(\widehat {ABC} = {180^o} - \widehat {BAD} = {180^o} - {120^o} = {60^o}\)

Theo định lí cosin ta có:

\(\begin{array}{l}A{C^2} = A{B^2} + B{C^2} - 2.AB.BC.\cos \widehat {ABC}\\ \Leftrightarrow A{C^2} = {2^2} + {3^2} - 2.2.3.\cos {60^o}\\ \Leftrightarrow A{C^2} = 7\\ \Leftrightarrow AC = \sqrt {7} \end{array}\)

Vậy \(\left| {\overrightarrow {{F_1}}  + \overrightarrow {{F_2}} } \right| = \sqrt {7} \)

Quảng cáo

Tham Gia Group Dành Cho 2K9 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close