Giải bài 4.39 trang 72 SGK Toán 10 – Kết nối tri thức

Trên sông, một cano chuyển động thẳng đều theo hướng S15E với vận tốc có độ lớn bằng 20 km/h. Tính vận tốc riêng của cano, biết rằng, nước trên sông chảy về hướng đông với vận tốc có độ lớn bằng 3 km/h.

Quảng cáo

Đề bài

Trên sông, một cano chuyển động thẳng đều theo hướng \(S{15^o}E\) với vận tốc có độ lớn bằng 20 km/h. Tính vận tốc riêng của cano, biết rằng, nước trên sông chảy về hướng đông với vận tốc có độ lớn bằng 3 km/h.

Phương pháp giải - Xem chi tiết

Định lí cosin trong tam giác OAC: \(A{C^2} = O{A^2} + O{C^2} - 2.OA.OC.\cos \widehat {AOC}\)

Lời giải chi tiết

Lấy các điểm: A, C sao cho:

Vectơ vận tốc dòng nước\(\overrightarrow {{v_n}}  = \overrightarrow {OA} \)

Vectơ vận tốc chuyển động \(\overrightarrow {{v_{cano}}}  = \overrightarrow {OC} \)

Ta có: \(\overrightarrow {{v_{cano}}}  = \overrightarrow {{v_n}}  + \overrightarrow v \), với \(\overrightarrow v \) là vectơ vận tốc riêng của cano.

Gọi B là điểm sao cho \(\overrightarrow v  = \overrightarrow {OB} \) thì OACB là hình bình hành.

 

Vì tàu chuyển động theo hướng \(S{15^o}E\) nên vectơ \(\overrightarrow {OC} \) tạo với hướng Nam (tia OS) góc \({15^o}\) và tạo với hướng Đông (tia OE) góc \({90^o} - {15^o} = {75^o}\).

Mà nước trên sông chảy về hướng đông nên vectơ \(\overrightarrow {OA} \) cùng hướng với vectơ \(\overrightarrow {OE} \)

Do đó góc tạo bởi vectơ \(\overrightarrow {OC} \) và vectơ \(\overrightarrow {OA} \) là \({75^o}\)

Xét tam giác OAC ta có:

\(OA = \;|\overrightarrow {{v_n}} |\; = 3\); \(OC = \;|\overrightarrow {{v_{cano}}} |\; = 20\) và \(\widehat {AOC} = {75^o}\)

Áp dụng định lí cosin tại đỉnh O ta được:

\(\begin{array}{l}A{C^2} = O{A^2} + O{C^2} - 2.OA.OC.\cos \widehat {AOC}\\ \Leftrightarrow A{C^2} = {3^2} + {20^2} - 2.3.20.\cos {75^o} \approx 378\\ \Leftrightarrow OB = AC \approx 19,44\end{array}\)

Vậy vận tốc riêng của cano là 19,44 km/h

Quảng cáo

Tham Gia Group Dành Cho 2K9 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close