Giải bài 4.37 trang 72 SGK Toán 10 – Kết nối tri thứcCho vectơ a khác 0. Chứng minh rằng 1/|a|. a (hay còn được viết là a/|a| là một vectơ đơn vị, cùng hướng với vectơ a. Tổng hợp đề thi học kì 1 lớp 10 tất cả các môn - Kết nối tri thức Toán - Văn - Anh - Lí - Hóa - Sinh - Sử - Địa... Quảng cáo
Đề bài Cho vectơ \(\overrightarrow a \ne \overrightarrow 0 \). Chứng minh rằng \(\frac{1}{{|\overrightarrow a |}}\;\overrightarrow a \) (hay còn được viết là \(\frac{{\overrightarrow a }}{{|\overrightarrow a |}}\)) là một vectơ đơn vị, cùng hướng với vectơ \(\overrightarrow a \). Lời giải chi tiết Cho vectơ \(\overrightarrow a \ne \overrightarrow 0 \). Chứng minh rằng \(\frac{1}{{|\overrightarrow a |}}\;\overrightarrow a \) (hay còn được viết là \(\frac{{\overrightarrow a }}{{|\overrightarrow a |}}\)) là một vectơ đơn vị, cùng hướng với vectơ \(\overrightarrow a \). Lời giải chi tiết Cách 1: Gọi tọa độ của vectơ \(\overrightarrow a \) là (x; y). Ta có: \(|\overrightarrow a |\, = \sqrt {{x^2} + {y^2}} \). Đặt \(\overrightarrow i = \frac{1}{{|\overrightarrow a |}}\;.\overrightarrow a \) \( \Rightarrow \overrightarrow i = \frac{1}{{\sqrt {{x^2} + {y^2}} }}.(x;y) = \left( {\frac{x}{{\sqrt {{x^2} + {y^2}} }};\frac{y}{{\sqrt {{x^2} + {y^2}} }}} \right)\) \( \Rightarrow |\overrightarrow i |\, = \sqrt {{{\left( {\frac{x}{{\sqrt {{x^2} + {y^2}} }}} \right)}^2} + {{\left( {\frac{y}{{\sqrt {{x^2} + {y^2}} }}} \right)}^2}} = \sqrt {\frac{{{x^2}}}{{{x^2} + {y^2}}} + \frac{{{y^2}}}{{{x^2} + {y^2}}}} = 1\) Mặt khác: \(\overrightarrow i = \frac{1}{{|\overrightarrow a |}}\;.\overrightarrow a = \frac{1}{{\sqrt {{x^2} + {y^2}} }}.\overrightarrow a \) và \(\frac{1}{{\sqrt {{x^2} + {y^2}} }} > 0\) với mọi \(x,y \ne 0\) Do đó vectơ \(\overrightarrow i \) và \(\overrightarrow a \) cùng hướng. Vậy \(\frac{1}{{|\overrightarrow a |}}\;\overrightarrow a \) (hay \(\frac{{\overrightarrow a }}{{|\overrightarrow a |}}\)) là một vectơ đơn vị, cùng hướng với vectơ \(\overrightarrow a \). Cách 2: Với mọi vectơ \(\overrightarrow a \ne \overrightarrow 0 \), ta có: \(|\overrightarrow a |\; > 0 \Rightarrow k = \frac{1}{{|\overrightarrow a |}} > 0\). Đặt \(\overrightarrow i = \frac{1}{{|\overrightarrow a |}}\;.\overrightarrow a = k.\overrightarrow a \) \(\begin{array}{l} \Rightarrow |\overrightarrow i |\, = \;|k.\overrightarrow a |\; = \;|k|.|\overrightarrow a |\;\\ \Leftrightarrow \left| {\overrightarrow {\,i} \,} \right| = k.|\overrightarrow a |\; = \frac{1}{{|\overrightarrow a |}}.|\overrightarrow a | = 1\end{array}\) Mặt khác: \(\overrightarrow i = \frac{1}{{|\overrightarrow a |}}\;.\overrightarrow a = k.\overrightarrow a \) và \(k > 0\) Do đó vectơ \(\overrightarrow i \) và \(\overrightarrow a \) cùng hướng. Vậy \(\frac{1}{{|\overrightarrow a |}}\;\overrightarrow a \) (hay \(\frac{{\overrightarrow a }}{{|\overrightarrow a |}}\)) là một vectơ đơn vị, cùng hướng với vectơ \(\overrightarrow a \).
Quảng cáo
|