Giải bài 13 trang 96 SGK Toán 10 – Kết nối tri thứcTừ các công thức tính diện tích tam giác đã được học, hãy chứng minh rằng, trong tam giác ABC, ta có Tổng hợp đề thi học kì 1 lớp 10 tất cả các môn - Kết nối tri thức Toán - Văn - Anh - Lí - Hóa - Sinh - Sử - Địa... Quảng cáo
Đề bài Từ các công thức tính diện tích tam giác đã được học, hãy chứng minh rằng, trong tam giác ABC, ta có \(r = \frac{{\sqrt {(b + c - a)(c + a - b)(a + b - c)} }}{{2\sqrt {a + b + c} }}\) Lời giải chi tiết Ta có: \(S = p.r \Rightarrow r = \frac{S}{p}\) Mà \(S = \sqrt {p(p - a)(p - b)(p - c)} \) (công thức Heron), \(p = \frac{{a + b + c}}{2}\) \(\begin{array}{l} \Rightarrow S = \sqrt {\frac{{a + b + c}}{2}\left( {\frac{{a + b + c}}{2} - a} \right)\left( {\frac{{a + b + c}}{2} - b} \right)\left( {\frac{{a + b + c}}{2} - c} \right)} \\ = \sqrt {\frac{1}{{16}}.\left( {a + b + c} \right)\left( { - a + b + c} \right)\left( {a - b + c} \right)\left( {a + b - c} \right)} \\ = \frac{1}{4}\sqrt {\left( {a + b + c} \right)\left( { - a + b + c} \right)\left( {a - b + c} \right)\left( {a + b - c} \right)} \end{array}\) \(\begin{array}{l} \Rightarrow r = \frac{{\frac{1}{4}\sqrt {\left( {a + b + c} \right)\left( { - a + b + c} \right)\left( {a - b + c} \right)\left( {a + b - c} \right)} }}{{\frac{1}{2}\left( {a + b + c} \right)}}\\ = \frac{1}{2}\frac{{\sqrt {\left( {a + b + c} \right)\left( { - a + b + c} \right)\left( {a - b + c} \right)\left( {a + b - c} \right)} }}{{a + b + c}}\\ = \frac{{\sqrt {\left( { - a + b + c} \right)\left( {a - b + c} \right)\left( {a + b - c} \right)} }}{{2\sqrt {a + b + c} }}\;\;(dpcm)\end{array}\)
Quảng cáo
|