Lý thuyết Phương trình bậc hai một ẩn Toán 9 Cánh diều1. Định nghĩa phương trình bậc hai một ẩn Phương trình bậc hai một ẩn (nói gọn là phương trình bậc hai) là phương trình có dạng \(a{x^2} + bx + c = 0\), trong đó x là ẩn; a, b, c là những số cho trước gọi là các hệ số và \(a \ne 0\). Tổng hợp đề thi giữa kì 1 lớp 9 tất cả các môn - Cánh diều Toán - Văn - Anh - Khoa học tự nhiên Quảng cáo
1. Định nghĩa phương trình bậc hai một ẩn
Ví dụ: Phương trình \(2{x^2} - 3x + 1 = 0\) là phương trình bậc hai với \(a = 2;b = - 3;c = 1\). Phương trình \({x^2} - 3 = 0\) là phương trình bậc hai với \(a = 1,b = 0,c = - 3\). Phương trình \(0{x^2} - 2x - 3 = 0\) không là phương trình bậc hai vì \(a = 0\). 2. Giải phương trình Giải phương trình bậc hai \({\left( {x - n} \right)^2} = m\)
Ví dụ: Giải phương trình \({\left( {x - 1} \right)^2} = 3\) Ta có: \({\left( {x - 1} \right)^2} = 3\) \(x - 1 = \sqrt 3 \) hoặc \(x - 1 = - \sqrt 3 \) \(x = 1 + \sqrt 3 \) hoặc \(x = 1 - \sqrt 3 \). Vậy phương trình đã cho có hai nghiệm là \({x_1} = 1 + \sqrt 3 \) và \({x_2} = 1 - \sqrt 3 \). 3. Công thức nghiệm của phương trình bậc hai Công thức nghiệm của phương trình bậc hai:
Ví dụ: Giải phương trình \({x^2} - 7x - 8 = 0\). Ta có: \(a = 1,b = - 7,c = - 8\). \(\Delta = {b^2} - 4ac = {\left( { - 7} \right)^2} - 4.1.\left( { - 8} \right) = 81 > 0\). Vậy phương trình có hai nghiệm phân biệt là \({x_1} = \frac{{ - \left( { - 7} \right) + \sqrt {81} }}{{2.1}} = 8;{x_2} = \frac{{ - \left( { - 7} \right) - \sqrt {81} }}{{2.1}} = - 1\). Công thức nghiệm thu gọn của phương trình bậc hai:
Ví dụ: Giải phương trình \(7{x^2} - 12x + 5 = 0\). Ta có: \(a = 7,b' = - 6,c = 5\). \(\Delta ' = b{'^2} - ac = {\left( { - 6} \right)^2} - 7.5 = 1 > 0\). Vậy phương trình có hai nghiệm phân biệt là \({x_1} = \frac{{ - \left( { - 6} \right) + 1}}{7} = 1;{x_2} = \frac{{ - \left( { - 6} \right) - 1}}{7} = \frac{5}{7}\). 4. Ứng dụng của phương trình bậc hai một ẩn Phương trình bậc hai một ẩn giúp chúng ta giải quyết nhiều vấn đề trong toán học cũng như trong thực tiễn. Để giải bài toán bằng cách lập phương trình bậc hai, ta có thể làm như sau:
Ví dụ: Một ca nô xuất phát từ một bến và có chuyển động thẳng theo hướng Đông. Cùng lúc đó, một tàu thủy rời bến và chuyển động thẳng theo hướng Nam với tốc độ lớn hơn tốc độ của ca nô 8km/h. Tính tốc độ của ca nô, biết sau một giờ kể từ lúc xuất phát, khoảng cách giữa ca nô với tàu thủy là 40km. Lời giải: Gọi tốc độ của ca nô là \(x\left( {km/h} \right)\left( {x > 0} \right)\). Tốc độ của tàu thủy là \(x + 8\left( {km/h} \right)\). Gọi A là vị trí của bến, gọi B, C lần lượt là vị trí của ca nô và tàu thủy sau khi rời bến 1 giờ (như hình vẽ). Quãng đường ca nô đi được sau 1 giờ là: \(AB = x.1 = x\left( {km} \right)\) Quãng đường tàu thủy đi được sau 1 giờ là: \(AC = \left( {x + 8} \right).1 = x + 8\left( {km} \right)\) Ca nô và tày thủy chuyển động theo hai hướng vuông góc với nhau nên tam giác ABC vuông tại A. Ta có: \(A{B^2} + A{C^2} = B{C^2}\) (định lí Pythagore). \(\begin{array}{l}{x^2} + {\left( {x + 8} \right)^2} - {40^2}\\{x^2} + {x^2} + 16x + 64 = 1600\\2{x^2} + 16x - 1536 = 0\\{x^2} + 8x - 768 = 0\end{array}\) Ta có: \(\Delta ' = {4^2} + 768 = 784,\sqrt {\Delta '} = 28\). Suy ra phương trình có hai nghiệm phân biệt: \({x_1} = \frac{{ - 4 - 28}}{1} = - 32\) (loại); \({x_2} = \frac{{ - 4 + 28}}{1} = 24\) (thỏa mãn điều kiện). Vậy tốc độ của ca nô là \(24km/h\). 5. Tìm nghiệm của phương trình bậc hai bằng máy tính cầm tay Sử dụng máy tính cầm tay, ta có thể dễ dạng tìm nghiệm của các phương trình bậc hai. Bước 1. Ta sử dụng loại máy tính cầm tay (MTCT) có chức năng này (có phím MODE/MENU). - Đối với máy Fx-570VN PLUS, ta bấm phím MODE rồi bấm phím 5 rồi bấm phím 3 để chuyển về chế độ giải phương trình bậc hai. - Đối với máy Fx-580VNX, ta bấm MENU rồi bấm phím 9 để chọn tính năng Equation/Func (Ptrình/HệPtrình). Bấm phím 2 để chọn Polynomial Degree Cuối cùng, bấm phím 2 để giải phương trình bậc hai Bước 2. Ta nhập các hệ số \(a,b,c\) bằng cách bấm Đối với phương trình bậc hai có nghiệm kép, ta nhận được kết quả hiển thị trên màn hình như sau: Đối với phương trình bậc hai vô nghiệm, ta nhận được kết quả hiển thị trên màn hình như sau:
Quảng cáo
|