Lý thuyết Hệ thức lượng trong tam giác

1. Định lí cosin 2. Định lí sin 3. Giải tam giác và ứng dụng thực tế

Quảng cáo

Nhắc lại hệ thức lượng trong tam giác vuông.

Cho tam giác \(ABC\) vuông góc tại đỉnh \(A\) (\(\widehat{A} = 90^0\)), ta có:

1. \({b^2} = ab';{c^2} = a.c'\)

2. Định lý Pitago : \({a^2} = {b^2} + {c^2}\)

3. \(a.h = b.c\)

4. \(h^2= b’.c’\)

5. \(\dfrac{1}{h^{2}}\) = \(\dfrac{1}{b^{2}}\) + \(\dfrac{1}{c^{2}}\)

 

1. Định lý cosin

Định lí: Trong một tam giác bất kì, bình phương một cạnh bằng tổng các bình phương của hai cạnh còn lại trừ đi hai lần tích của hai cạnh đó nhân với \(cosin\) của góc xen giữa chúng.

Ta có các hệ thức sau:  

$$\eqalign{
& {a^2} = {b^2} + {c^2} - 2bc.\cos A \, \, (1) \cr
& {b^2} = {a^2} + {c^2} - 2ac.\cos B \, \, (2) \cr
& {c^2} = {a^2} + {b^2} - 2ab.\cos C \, \, (3) \cr} $$

Hệ quả của định lí cosin:

\(\cos A = \dfrac{b^{2}+c^{2}-a^{2}}{2bc}\)

\(\cos B = \dfrac{a^{2}+c^{2}-b^{2}}{2ac}\)

\(\cos C = \dfrac{a^{2}+b^{2}-c^{2}}{2ab}\)

Áp dụng: Tính độ dài đường trung tuyến của tam giác:

Cho tam giác \(ABC\) có các cạnh \(BC = a, CA = b\) và \(AB = c\). Gọi \(m_a,m_b\) và \(m_c\) là độ dài các đường trung tuyến lần lượt vẽ từ các đỉnh \(A, B, C\) của tam giác. Ta có

\({m_{a}}^{2}\) =  \(\dfrac{2.(b^{2}+c^{2})-a^{2}}{4}\)

\({m_{b}}^{2}\) = \(\dfrac{2.(a^{2}+c^{2})-b^{2}}{4}\)

\({m_{c}}^{2}\) = \(\dfrac{2.(a^{2}+b^{2})-c^{2}}{4}\)

2. Định lí sin

Định lí: Trong tam giác \(ABC\) bất kỳ, tỉ số giữa một cạnh và sin của góc đối diện với cạnh đó bằng đường kính của đường tròn ngoại tiếp tam giác, nghĩa là

\(\dfrac{a}{\sin A}= \dfrac{b}{\sin B} = \dfrac{c}{\sin C} = 2R\)

với \(R\) là bán kính đường tròn ngoại tiếp tam giác 

Công thức tính diện tích tam giác

Diện tích \(S\) của tam giác \(ABC\) được tính theo một trong các công thức sau

\(S = \dfrac{1}{2} ab \sin C= \dfrac{1}{2} bc \sin A \) \(= \dfrac{1}{2}ca \sin B \, \,(1)\)   

\(S = \dfrac{abc}{4R}\, \,(2)\)           

\(S = pr\, \,(3)\)              

\(S = \sqrt{p(p - a)(p - b)(p - c)}\)  (công thức  Hê - rông) \((4)\)

Trong đó:\(BC = a, CA = b\) và \(AB = c\); \(R, r\) là bán kính đường tròn ngoại tiếp, bk đường tròn nội tiếp và \(S\) là diện tích tam giác đó.

3. Giải tam giác và ứng dụng vào việc đo đạc

Giải tam giác : Giải tam giác là đi tìm các yếu tố (góc, cạnh) chưa biết của tam giác khi đã biết một số yếu tố của tam giác đó.

Muốn giải tam giác ta cần tìm mối liên hệ giữa các góc, cạnh đã cho với các góc, các cạnh chưa biết của tam giác thông qua các hệ thức đã được nêu trong định lí cosin, định lí sin và các công thức tính diện tích tam giác.

Các bài toán về giải tam giác: Có 3 bài toán cơ bản về gỉải tam giác:

a) Giải tam giác khi biết một cạnh và hai góc.

=> Dùng định lí sin để tính cạnh còn lại.

b) Giải tam giác khi biết hai cạnh và góc xen giữa

=> Dùng định lí cosin để tính cạnh thứ ba. 

Sau đó dùng hệ quả của định lí cosin để tính góc.

c) Giải tam giác khi biết ba cạnh

Đối với bài toán này ta sử dụng hệ quả của định lí cosin để tính góc: 

    \(\cos A = \dfrac{b^{2}+c^{2}-a^{2}}{2bc}\)       

    \(\cos B = \dfrac{a^{2}+c^{2}-b^{2}}{2ac}\)

    \(cos C = \dfrac{a^{2}+b^{2}-c^{2}}{2ab}\)

Chú ý: 

1. Cần lưu ý là một tam giác giải được khi ta biết 3 yếu tố của nó, trong đó phải có ít nhất một yếu tố độ dài (tức là yếu tố góc không được quá 2)

2. Việc giải tam giác được sử dụng vào các bài toán thực tế, nhất là các bài toán đo đạc.

 

  • Giải câu hỏi mở đầu trang 38 SGK Toán 10 tập 1 - Kết nối tri thức

    Ngắm Tháp Rùa từ bờ, chỉ với những dụng cụ đơn giản, dễ chuẩn bị, ta cũng có thể xác định được khoảng cách từ vị trí đứng tới tháp rùa. Em có biết vì sao không?

  • Giải mục 1 trang 38, 39 SGK Toán 10 tập 1 - Kết nối tri thức

    Một tàu biển xuất phát từ cảng Vân Phong (Khánh Hòa) Trong Hình 3.8, hãy thực hiện các bước sau để thiết lập công thức tính a theo b,c và giá trị lượng giác của góc A Định lí Pythagore có phải là một trường hợp đặc biệt của định lí cosin hay không? Từ định lí cosin hãy viết các công thức tính cos A, cos B, cos C Cho tam giác ABC có AB = 5, AC = 8 Vẽ một tam giác ABC, sau đó đo độ dài các cạnh, Dùng định lí cosin, tính khoảng cách được đề cập trong HĐ 1b.

  • Giải mục 2 trang 39, 40 SGK Toán 10 tập 1 - Kết nối tri thức

    Trong mỗi hình dưới dây, hãy tính R theo a và sinA. Cho tam giác ABC có b = 8, c = 5 và B=80. Tính số đo các góc, bán kính đường tròn ngoại tiếp và độ dài cạnh còn lại của tam giác.

  • Giải mục 3 trang 40, 41 SGK Toán 10 tập 1 - Kết nối tri thức

    Giải tam giác ABC, biết b = 32, c =45, A =87. Từ một khu vực có thể quan sát được hai đỉnh núi, ta có thể ngắm và đo để xác định khoảng cách giữa hai đỉnh núi đó. Hãy thảo luận để đưa ra các bước cho một cách đo.

  • Giải mục 4 trang 41, 42 SGK Toán 10 tập 1 - Kết nối tri thức

    Cho tam giác ABC với I là tâm đường trong nội tiếp tam giác Cho tam giác ABC với đường cao BD. a) Biểu thị BD theo AB và sinA. Tính diện tích tam giác ABC có b = 2, B = 30, C = 45 Ta đã biết tính cos A theo độ dài các cạnh của tam giác ABC. Liệu sin A và diện tích S có tính theo độ dài các cạnh của tam giác ABC hay không? Công viên Hòa Bình (Hà Nội) có dạng hình ngũ giác ABCDE như hình 3.17

Quảng cáo

Tham Gia Group Dành Cho 2K9 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close