Giải bài tập 9.7 trang 76 SGK Toán 9 tập 2 - Kết nối tri thứcCho đường tròn (O) ngoại tiếp tam giác ABC. Tính bán kính của (O), biết rằng tam giác ABC vuông cân tại A và có cạnh bên bằng (2sqrt 2 cm). Tổng hợp đề thi học kì 1 lớp 9 tất cả các môn - Kết nối tri thức Toán - Văn - Anh - KHTN - Lịch sử và Địa lí Quảng cáo
Đề bài Cho đường tròn (O) ngoại tiếp tam giác ABC. Tính bán kính của (O), biết rằng tam giác ABC vuông cân tại A và có cạnh bên bằng \(2\sqrt 2 cm\). Video hướng dẫn giải Phương pháp giải - Xem chi tiết + Áp dụng định lí Pythagore vào tam giác ABC vuông tại A tính BC. + Vì O là trung điểm của BC nên\(OB = OC = \frac{{BC}}{2}\) là bán kính đường tròn (O) ngoại tiếp tam giác ABC. Lời giải chi tiết Tam giác ABC vuông cân tại A nên \(AB = AC = 2\sqrt 2 cm\) Áp dụng định lí Pythagore vào tam giác ABC vuông tại A ta có: \(B{C^2} = A{B^2} + A{C^2} = {\left( {2\sqrt 2 } \right)^2} + {\left( {2\sqrt 2 } \right)^2} = 16 \Rightarrow BC = 4cm\) Vì O là trung điểm của BC nên \(OB = OC = \frac{{BC}}{2} = \frac{4}{2} = 2\left( {cm} \right)\) Vì tam giác ABC vuông tại A nên tam giác ABC nội tiếp đường tròn tâm O, bán kính OC. Vậy bán kính đường tròn (O) ngoại tiếp tam giác ABC bằng 2cm.
Quảng cáo
|