Giải bài tập 3.21 trang 59 SGK Toán 9 tập 1 - Kết nối tri thứcRút gọn các biểu thức sau: a) (2sqrt {frac{2}{3}} - 4sqrt {frac{3}{2}} ;) b) (frac{{5sqrt {48} - 3sqrt {27} + 2sqrt {12} }}{{sqrt 3 }};) c) (frac{1}{{3 + 2sqrt 2 }} + frac{{4sqrt 2 - 4}}{{2 - sqrt 2 }}.) Quảng cáo
Đề bài Rút gọn các biểu thức sau: a) \(2\sqrt {\frac{2}{3}} - 4\sqrt {\frac{3}{2}} ;\) b) \(\frac{{5\sqrt {48} - 3\sqrt {27} + 2\sqrt {12} }}{{\sqrt 3 }};\) c) \(\frac{1}{{3 + 2\sqrt 2 }} + \frac{{4\sqrt 2 - 4}}{{2 - \sqrt 2 }}.\) Video hướng dẫn giải Phương pháp giải - Xem chi tiết Sử dụng trục căn thức để khử mẫu, đưa thừa số ra ngoài dấu căn và đưa vào trong dấu căn, kết hợp các phương pháp để rút gọn biểu thức Lời giải chi tiết a) \(2\sqrt {\frac{2}{3}} - 4\sqrt {\frac{3}{2}} \)\( = 2\frac{{\sqrt 2 }}{{\sqrt 3 }} - 4\frac{{\sqrt 3 }}{{\sqrt 2 }}\)\( = 2.\frac{{\sqrt 6 }}{3} - 4.\frac{{\sqrt 6 }}{2}\)\( = \sqrt 6 \left( {\frac{2}{3} - 2} \right)\)\( = \frac{{ - 4\sqrt 6 }}{3}.\) b) \(\frac{{5\sqrt {48} - 3\sqrt {27} + 2\sqrt {12} }}{{\sqrt 3 }}\)\( = \frac{{5\sqrt {16.3} - 3\sqrt {9.3} + 2\sqrt {4.3} }}{{\sqrt 3 }}\)\( = \frac{{\sqrt 3 .\left( {5\sqrt {16} - 3\sqrt 9 + 2\sqrt 4 } \right)}}{{\sqrt 3 }}\)\( = 5.4 - 3.3 + 2.2\)\( = 20 - 9 + 4\)\( = 15\) c) \(\frac{1}{{3 + 2\sqrt 2 }} + \frac{{4\sqrt 2 - 4}}{{2 - \sqrt 2 }}\)\( = \frac{{3 - 2\sqrt 2 }}{{\left( {3 + 2\sqrt 2 } \right)\left( {3 - 2\sqrt 2 } \right)}} + \frac{{4\left( {\sqrt 2 - 1} \right)}}{{\sqrt 2 \left( {\sqrt 2 - 1} \right)}}\)\( = \frac{{3 - 2\sqrt 2 }}{{9 - 8}} + \frac{4}{{\sqrt 2 }}\)\( = 3 - 2\sqrt 2 + \frac{{4\sqrt 2 }}{2}\) \( = 3 - 2\sqrt 2 + 2\sqrt 2 \)\( = 3\)
Quảng cáo
|