Bài 8.1, 8.2 phần bài tập bổ sung trang 26 SBT toán 7 tập 2

Giải bài 8.1, 8.2 phần bài tập bổ sung trang 26 sách bài tập toán 7. Cho..a) Thu gọn và sắp xếp các đa thức trên theo lũy thừa tăng của biến.b) Tính f (x) + g (x) – h (x)

Quảng cáo
Lựa chọn câu để xem lời giải nhanh hơn

Bài 8.1

Cho 

\(f(x) = {x^2} + 2{{\rm{x}}^3} - 7{{\rm{x}}^5} - 9 - 6{{\rm{x}}^7} \)\(+ {x^3} + {x^2} + {x^5} - 4{{\rm{x}}^2} + 3{{\rm{x}}^7}\)

\(g(x) = {x^5} + 2{{\rm{x}}^3} - 5{{\rm{x}}^8} - {x^7} + {x^3} + 4{{\rm{x}}^2} \)\(- 5{{\rm{x}}^7} + {x^4} - 4{{\rm{x}}^2} - {x^6} - 12\)

\(h(x) = x + 4{{\rm{x}}^5} - 5{{\rm{x}}^6} - {x^7} + 4{{\rm{x}}^3} + {x^2} \)\(- 2{{\rm{x}}^7} + {x^6} - 4{{\rm{x}}^2} - 7{{\rm{x}}^7} + x\)

a) Thu gọn và sắp xếp các đa thức trên theo lũy thừa tăng của biến. 

b) Tính \(f (x) + g (x) – h (x)\)

Phương pháp giải:

+) Nhóm các hạng tử đồng dạng với nhau để thu gọn các đa thức  

+) Đặt phép tính theo hàng dọc: 

Sắp xếp các hạng tử của hai đa thức cùng theo lũy thừa giảm (hoặc tăng) của biến, rồi đặt phép tính theo cột dọc tương tự như cộng, trừ các số (chú ý đặt các đơn thức đồng dạng ở cùng một cột).

Lời giải chi tiết:

a) 

b) Ta có:

Bài 8.2

Thu gọn đa thức \(\left( {4{{\rm{x}}^3} + 2{{\rm{x}}^2} - 1} \right) \)\(- \left( {4{{\rm{x}}^3} - {x^2} + 1} \right)\) ta được:

\((A){x^2}\)                                \(\left( B \right){x^2} - 2\)

\(\left( C \right)3{{\rm{x}}^2} - 2\)                     \(\left( D \right)8{{\rm{x}}^3} + {x^2}\)

Hãy chọn phương án đúng.

Phương pháp giải:

Để cộng (hay trừ) hai đa thức, ta làm các bước sau: 

Bước 1: Viết hai đa thức trong dấu ngoặc

Bước 2: Thực hiện bỏ dấu ngoặc (theo quy tắc dấu ngoặc)

Bước 3: Nhóm các hạng tử đồng dạng 

Bước 4: Cộng, trừ các đơn thức đồng dạng. 

Lời giải chi tiết:

Ta có: \(\left( {4{{\rm{x}}^3} + 2{{\rm{x}}^2} - 1} \right) \)\(- \left( {4{{\rm{x}}^3} - {x^2} + 1} \right)\)

\(={4{{\rm{x}}^3} + 2{{\rm{x}}^2} - 1}\)\(-4{{\rm{x}}^3} + {x^2} - 1\)

\(=(4x^3-4x^3)+(2x^2+x^2)-1-1\)

\(=(4-4)x^3+(2+1)x^2-1-1\)

\(=3x^2-2\)

Đáp án đúng là \(\left( C \right)\)

Loigaihay.com

Quảng cáo

Tham Gia Group Dành Cho 2K12 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close