Giải bài 7.1 trang 34 SGK Toán 10 – Kết nối tri thứca) Lập phương trình tổng quát của đường thẳng b) Lập phương trình tham số của đường thẳng Quảng cáo
Đề bài Trong mặt phẳng toạ độ, cho\(\vec n = \left( {2;{\rm{ }}1} \right),{\rm{ }}\vec v{\rm{ }} = {\rm{ }}\left( {3,{\rm{ }}2} \right),{\rm{ }}A\left( {1,{\rm{ }}3} \right),{\rm{ }}B\left( { - 2;{\rm{ }}1} \right)\) . a) Lập phương trình tổng quát của đường thẳng \({\Delta _1}\) đi qua A và có vectơ pháp tuyến \(\overrightarrow n \). b) Lập phương trình tham số của đường thẳng \({\Delta _2}\), đi qua B và có vectơ chỉ phương \(\overrightarrow v \). c) Lập phương trình tham số của đường thẳng AB. Phương pháp giải - Xem chi tiết Phương trình tổng quát của đường thẳng\(\Delta \) đi qua điểm \({M_o}\left( {{x_o};{y_o}} \right)\) và nhận \(\overrightarrow n = \left( {{\rm{a }};{\rm{ b}}} \right)\left( {\overrightarrow n \ne 0} \right)\)làm vectơ pháp tuyến là: \(a\left( {x - {x_o}} \right) + b\left( {y - {y_o}} \right) = 0\). Phương trình tham số của đường thẳng\(\Delta \) đi qua điểm \({M_o}\left( {{x_o};{y_o}} \right)\) và nhận \(\overrightarrow u = \left( {{\rm{a }};{\rm{ b}}} \right)\left( {\overrightarrow u \ne 0} \right)\)làm vectơ chỉ phương là: \(\left\{ \begin{array}{l}x = {x_o} + at\\y = {y_o} + bt\end{array} \right.\) ( \(t\) là tham số ) Lời giải chi tiết a) Phương trình tổng quát của đường thẳng \({\Delta _1}\) là: \(2\left( {x - 1} \right) + 1\left( {y - 3} \right) = 0 \Leftrightarrow 2x + y - 5 = 0\). b) Phương trình tham số của đường thẳng \({\Delta _2}\) là:\(\left\{ \begin{array}{l}x = - 2 + 3t\\y = 1 + 2t\end{array} \right.\) c) Phương trình đường thẳng AB đi qua điểm \(A\left( {1;3} \right)\) nhận \(\overrightarrow {AB} = \left( { - 3; - 2} \right)\) là vectơ chỉ phương nên phương trình tham số của AB là \(\left\{ \begin{array}{l}x = 1 - 3t\\y = 3 - 2t\end{array} \right.\)
Quảng cáo
|