Bài 5.115 trang 217 SBT đại số và giải tích 11

Giải bài 5.115 trang 217 SBT đại số và giải tích 11. Chứng minh rằng...

Quảng cáo
Lựa chọn câu để xem lời giải nhanh hơn

Chứng minh rằng \(f'\left( x \right) > 0\forall x \in R,\) nếu

LG a

\(f\left( x \right) = {2 \over 3}{x^9} - {x^6} + 2{x^3} - 3{x^2} + 6x - 1\)

Phương pháp giải:

Tính đạo hàm và suy ra đpcm. 

Lời giải chi tiết:

\(\eqalign{
& f'\left( x \right) = 6\left( {{x^8} - {x^5} + {x^2} - x + 1} \right) \cr 
& = 6{x^2}\left( {{x^6} - {x^3} + {1 \over 4}} \right) + 3{x^2} + 6\left( {{{{x^2}} \over 4} - x + 1} \right) \cr 
& = 6{x^2}{\left( {{x^3} - {1 \over 2}} \right)^2} + 3{x^2} + 6{\left( {{x \over 2} - 1} \right)^2} > 0,\forall x \in R. \cr} \)

LG b

\(f\left( x \right) = 2x + \sin x.\)

Phương pháp giải:

Tính đạo hàm và suy ra đpcm.

Lời giải chi tiết:

\(f'\left( x \right) = 2 + \cos x > 0,\forall x \in R.\)

 Loigiaihay.com

Group 2K9 Ôn Thi ĐGNL & ĐGTD Miễn Phí

close