Bài 3.9 trang 138 SBT hình học 11

Giải bài 3.9 trang 138 sách bài tập hình học 11. Cho tứ giác ABCD. Gọi M, N, P, Q lần lượt là trung điểm của các đoạn AC, BD, AD và có MN = PQ . Chứng minh rằng AB ⊥ CD...

Quảng cáo

➡ Góp ý Loigiaihay.com, nhận quà liền tay! Góp ý ngay!💘

Đề bài

Cho tứ giác \(ABCD\). Gọi \(M, N, P, Q\) lần lượt là trung điểm của các đoạn \(AC, BD, AD\) và có \(MN = PQ\). Chứng minh rằng \(AB ⊥ CD\).

Phương pháp giải - Xem chi tiết

Ta cần chứng minh \(\overrightarrow {AB} .\overrightarrow {C{\rm{D}}}  = 0\)

Lời giải chi tiết

Ta cần chứng minh \(\displaystyle \overrightarrow {AB} .\overrightarrow {C{\rm{D}}}  = 0\)

Đặt \(\displaystyle \overrightarrow {AB}  = \overrightarrow b ,\,\,\overrightarrow {AC}  = \overrightarrow c ,\,\,\overrightarrow {AD}  = \overrightarrow d \). Ta có:

\(\displaystyle \overrightarrow {MN}  = \overrightarrow {MA}  + \overrightarrow {AN}\) \(\displaystyle   =  - {1 \over 2}\overrightarrow {AC}  + {1 \over 2}\left( {\overrightarrow {AB}  + \overrightarrow {AD} } \right)\)

Suy ra \(\displaystyle \overrightarrow {MN}  = {1 \over 2}\left( {\overrightarrow b  + \overrightarrow d  - \overrightarrow c } \right)\)

\(\displaystyle \eqalign{
& \overrightarrow {QP} = \overrightarrow {QA} + \overrightarrow {AP} \cr 
& = - {1 \over 2}\overrightarrow {A{\rm{D}}} + {1 \over 2}\left( {\overrightarrow {AB} + \overrightarrow {AC} } \right) \cr 
& = {1 \over 2}\left( {\overrightarrow b + \overrightarrow c - \overrightarrow d } \right) \cr} \)

Theo giả thiết ta có:

\(\displaystyle MN = PQ \Leftrightarrow {\overrightarrow {MN} ^2} = {\overrightarrow {QP} ^2}\)

\(\displaystyle \eqalign{
& {\left( {\overrightarrow b + \overrightarrow d - \overrightarrow c } \right)^2} = {\left( {\overrightarrow b + \overrightarrow c - \overrightarrow d } \right)^2} \cr 
& \Leftrightarrow \overrightarrow b .\overrightarrow d - \overrightarrow b .\overrightarrow c = \overrightarrow b .\overrightarrow c - \overrightarrow b .\overrightarrow d \cr 
& \Leftrightarrow 2\overrightarrow b .\overrightarrow d - 2\overrightarrow b .\overrightarrow c = 0 \cr 
& \Leftrightarrow \overrightarrow b .\left( {\overrightarrow d - \overrightarrow c } \right) = 0 \cr 
& \Leftrightarrow \overrightarrow {AB} .\left( {\overrightarrow {A{\rm{D}}} - \overrightarrow {AC} } \right) = 0 \cr 
& \Leftrightarrow \overrightarrow {AB} .\overrightarrow {C{\rm{D}}} = 0 \Leftrightarrow \overrightarrow {AB} \bot \overrightarrow {C{\rm{D}}} \cr} \)

 Loigiaihay.com

Quảng cáo

  • Bài 3.10 trang 138 SBT hình học 11

    Bài 3.10 trang 138 SBT hình học 11

    Giải bài 3.10 trang 138 sách bài tập hình học 11. Cho hình chóp tam giác S.ABC ...

  • Bài 3.11 trang 139 SBT hình học 11

    Bài 3.11 trang 139 SBT hình học 11

    Giải bài 3.11 trang 139 sách bài tập hình học 11. Tính góc giữa hai đường thẳng AB và SC...

  • Bài 3.12 trang 139 SBT hình học 11

    Bài 3.12 trang 139 SBT hình học 11

    Giải bài 3.12 trang 139 sách bài tập hình học 11. Chứng minh rằng một đường thẳng vuông góc với một trong hai đường thẳng song song thì vuông góc với đường thẳng kia.

  • Bài 3.13 trang 139 SBT hình học 11

    Bài 3.13 trang 139 SBT hình học 11

    Giải bài 3.13 trang 139 sách bài tập hình học 11. Cho hình hộp ABCD.A’B’C’D’ có tất cả các cạnh đều bằng nhau ( hình hộp như vậy còn được gọi là hình hộp thoi). Chứng minh rằng AC ⊥ B’D’

Gửi bài tập - Có ngay lời giải