Bài 3.49 trang 134 SBT đại số và giải tích 11Giải bài 3.49 trang 134 sách bài tập đại số và giải tích 11. Tìm m để phương trình ... Quảng cáo
Đề bài Tìm m để phương trình \({x^4} - \left( {3m + 5} \right){x^2} + {\left( {m + 1} \right)^2} = 0\) có bốn nghiệm lập thành cấp số cộng. Phương pháp giải - Xem chi tiết - Đặt \({x^2} = y,\) đưa phương trình về bậc hai. - Tìm điều kiện để phương trình sau có hai nghiệm dương. - Từ đó suy ra bốn nghiệm phương trình đầu và tìm điều kiện để phương trình đầu có bốn nghiệm tạo thành cấp số cộng. Lời giải chi tiết Đặt \({x^2} = y,\) ta có phương trình \({y^2} - \left( {3m + 5} \right)y + {\left( {m + 1} \right)^2} = 0{\rm{ }}\left( 1 \right)\) Để phương trình có 4 nghiệm thì phương trình (1) phải có 2 nghiệm dương phân biệt \({y_1},{y_2}{\rm{ }}\left( {{y_1} < {y_2}} \right)\) \( \Leftrightarrow \left\{ \begin{array}{l} Bốn nghiệm đó là \( - \sqrt {{y_2}} , - \sqrt {{y_1}} ,\sqrt {{y_1}} ,\sqrt {{y_2}} .\) Điều kiện để 4 nghiệm trên lập thành cấp số cộng là \(\sqrt {{y_2}} - \sqrt {{y_1}} = 2\sqrt {{y_1}} \) hay \({y_2} = 9{y_1}\,\,\left( 2 \right)\) Theo \(\left\{ \begin{array}{l}{y_1} + {y_2} = 3m + 5\,\,\left( 3 \right)\\{y_1}{y_2} = {\left( {m + 1} \right)^2}\,\,\left( 4 \right)\end{array} \right.\) Từ (2) và (3) ta có: \({y_1} + 9{y_1} = 3m + 5\)\( \Leftrightarrow {y_1} = \dfrac{{3m + 5}}{{10}}\) Thay \({y_1} = \dfrac{{3m + 5}}{{10}}\) và \({y_2} = \dfrac{{9\left( {3m + 5} \right)}}{{10}}\) vào \(\left( 4 \right)\) ta được: \(\dfrac{{3m + 5}}{{10}}.\dfrac{{9\left( {3m + 5} \right)}}{{10}} = {\left( {m + 1} \right)^2}\) \( \Leftrightarrow {\left( {3m + 5} \right)^2} = \dfrac{{100{{\left( {m + 1} \right)}^2}}}{9}\) \( \Leftrightarrow \left[ \begin{array}{l}3m + 5 = \dfrac{{10\left( {m + 1} \right)}}{3}\\3m + 5 = - \dfrac{{10\left( {m + 1} \right)}}{3}\end{array} \right.\) \( \Leftrightarrow \left[ \begin{array}{l}9m + 15 = 10m + 10\\9m + 15 = - 10m - 10\end{array} \right.\) \( \Leftrightarrow \left[ \begin{array}{l}m = 5\\m = - \dfrac{{25}}{{19}}\end{array} \right.\)\(\left( {TM} \right)\) Vậy \(m = 5\) và \(m = - \dfrac{{25}}{{19}}.\) Loigiaihay.com
Quảng cáo
|