Bài 3.16 trang 118 SBT đại số và giải tích 11

Giải bài 3.16 trang 118 sách bài tập đại số và giải tích 11. Hãy chọn dãy số bị chặn trong các dãy số ...

Quảng cáo

➡ Góp ý Loigiaihay.com, nhận quà liền tay! Góp ý ngay!💘

Đề bài

Hãy chọn dãy số bị chặn trong các dãy số \(\left( {{u_n}} \right)\) sau:

A. \({u_n} = {n^2} + n - 1\)        B. \({u_n} = {3^n}\)

C. \({u_n} = \sin n + \cos n\)

D. \({u_n} =  - 3{n^2} + 1\)

Phương pháp giải - Xem chi tiết

Đánh giá số hạng tổng quát của từng dãy số và nhận xét.

Lời giải chi tiết

Đáp án A: Dãy số không bị chặn trên vì hàm số bậc hai có hệ số \(a = 1 > 0\) nên không có số \(M\) nào để \({u_n} \le M,\forall n\).

Đáp án B: Dễ thấy \({3^n} > 0\) nhưng không có số \(M\) nào để \({3^n} \le M\).

Đáp án C: Ta có: \(\sin n + \cos n = \sqrt 2 \sin \left( {n + \dfrac{\pi }{4}} \right)\).

Mà \( - 1 \le \sin \left( {n + \dfrac{\pi }{4}} \right) \le 1\) nên \( - \sqrt 2  \le \sqrt 2 \sin \left( {n + \dfrac{\pi }{4}} \right) \le \sqrt 2 \).

Do đó dãy số \(\left( {{u_n}} \right)\) bị chặn.

Đáp án D: Hàm số bậc hai có hệ số \(a < 0\) thì không có số \(m\) nào để \({u_n} \ge m,\forall n\).

Chọn C.

Loigiaihay.com

Quảng cáo

Xem thêm tại đây: Bài 2: Dãy số
Gửi bài tập - Có ngay lời giải