Bài 3.14 trang 118 SBT đại số và giải tích 11Giải bài 3.14 trang 118 sách bài tập đại số và giải tích 11. Cho dãy số ... Tổng hợp đề thi học kì 2 lớp 11 tất cả các môn Toán - Văn - Anh - Lí - Hóa - Sinh - Sử - Địa - GDCD Quảng cáo
Đề bài Cho dãy số \(\left( {{u_n}} \right)\) thoả mãn điều kiện: Với mọi \(n \in N*\) thì \(0 < {u_n} < 1\) và \({u_{n + 1}} < 1 - \dfrac{1}{{4{u_n}}}\) Chứng minh dãy số đã cho là dãy giảm. Phương pháp giải - Xem chi tiết Chứng minh \({u_{n + 1}}\left( {1 - {u_{n + 1}}} \right) < {u_n}\left( {1 - {u_{n + 1}}} \right)\) và suy ra điều phải chứng minh. Lời giải chi tiết Vì \(0 < {u_n} < 1\) với mọi \(n\) nên \(1 - {u_{n + 1}} > 0.\) Áp dụng bất đẳng thức Cô – si cho hai số dương \({{u_{n + 1}}}\) và \(1-{{u_{n + 1}}}\)ta có: \(\sqrt {{u_{n + 1}}\left( {1 - {u_{n + 1}}} \right)} \le \frac{{{u_{n + 1}} + \left( {1 - {u_{n + 1}}} \right)}}{2} = \frac{1}{2}\) \( \Rightarrow {u_{n + 1}}\left( {1 - {u_{n + 1}}} \right) \le \dfrac{1}{4}.\) (1) Mặt khác, từ giả thiết \({u_{n + 1}} < 1 - \dfrac{1}{{4{u_n}}}\) suy ra \({u_{n + 1}}.{u_n} < {u_n} - \dfrac{1}{4}\) hay \(\dfrac{1}{4} < {u_n}\left( {1 - {u_{n + 1}}} \right).\) (2) So sánh (1) và (2) ta có: \({u_{n + 1}}\left( {1 - {u_{n + 1}}} \right) < {u_n}\left( {1 - {u_{n + 1}}} \right)\) hay \({u_{n + 1}} < {u_n}.\) Vậy dãy số đã cho giảm. Loigiaihay.com
Quảng cáo
|