Bài 2.9 trang 82 SBT hình học 10

Giải bài 2.9 trang 82 sách bài tập hình học 10. Tính giá trị của biểu thức ...

Quảng cáo

➡ Góp ý Loigiaihay.com, nhận quà liền tay! Góp ý ngay!💘

Đề bài

Biết \(\tan \alpha  = \sqrt 2 \). Tính giá trị của biểu thức \(A = \dfrac{{3\sin \alpha  - \cos \alpha }}{{\sin \alpha  + \cos \alpha }}\).

Phương pháp giải - Xem chi tiết

Sử dung công thức \(\tan \alpha  = \dfrac{{\sin \alpha }}{{\cos \alpha }}\) rút \(\sin \alpha \) theo \(\cos \alpha \) và thay vào biểu thức \(A\) tính giá trị.

Lời giải chi tiết

Ta có: \(\tan \alpha  = \sqrt 2 \)\( \Rightarrow \dfrac{{\sin \alpha }}{{\cos \alpha }} = \sqrt 2 \) \( \Rightarrow \sin \alpha  = \sqrt 2 \cos \alpha \)

\( \Rightarrow A = \dfrac{{3\sqrt 2 \cos \alpha  - \cos \alpha }}{{\sqrt 2 \cos \alpha  + \cos \alpha }}\) \( = \dfrac{{\cos \alpha \left( {3\sqrt 2  - 1} \right)}}{{\cos \alpha \left( {\sqrt 2  + 1} \right)}} = \dfrac{{3\sqrt 2  - 1}}{{\sqrt 2  + 1}}\) \( = \dfrac{{\left( {3\sqrt 2  - 1} \right)\left( {\sqrt 2  - 1} \right)}}{{\left( {\sqrt 2  + 1} \right)\left( {\sqrt 2  - 1} \right)}}\) \( = \dfrac{{6 - 4\sqrt 2  + 1}}{{2 - 1}} = 7 - 4\sqrt 2 \)

Vậy \(A = 7 - 4\sqrt 2 \).

Loigiaihay.com

Quảng cáo

Gửi bài tập - Có ngay lời giải