Bài 2.9 trang 82 SBT hình học 10

Giải bài 2.9 trang 82 sách bài tập hình học 10. Tính giá trị của biểu thức ...

Quảng cáo

Đề bài

Biết \(\tan \alpha  = \sqrt 2 \). Tính giá trị của biểu thức \(A = \dfrac{{3\sin \alpha  - \cos \alpha }}{{\sin \alpha  + \cos \alpha }}\).

Phương pháp giải - Xem chi tiết

Sử dung công thức \(\tan \alpha  = \dfrac{{\sin \alpha }}{{\cos \alpha }}\) rút \(\sin \alpha \) theo \(\cos \alpha \) và thay vào biểu thức \(A\) tính giá trị.

Lời giải chi tiết

Ta có: \(\tan \alpha  = \sqrt 2 \)\( \Rightarrow \dfrac{{\sin \alpha }}{{\cos \alpha }} = \sqrt 2 \) \( \Rightarrow \sin \alpha  = \sqrt 2 \cos \alpha \)

\( \Rightarrow A = \dfrac{{3\sqrt 2 \cos \alpha  - \cos \alpha }}{{\sqrt 2 \cos \alpha  + \cos \alpha }}\) \( = \dfrac{{\cos \alpha \left( {3\sqrt 2  - 1} \right)}}{{\cos \alpha \left( {\sqrt 2  + 1} \right)}} = \dfrac{{3\sqrt 2  - 1}}{{\sqrt 2  + 1}}\) \( = \dfrac{{\left( {3\sqrt 2  - 1} \right)\left( {\sqrt 2  - 1} \right)}}{{\left( {\sqrt 2  + 1} \right)\left( {\sqrt 2  - 1} \right)}}\) \( = \dfrac{{6 - 4\sqrt 2  + 1}}{{2 - 1}} = 7 - 4\sqrt 2 \)

Vậy \(A = 7 - 4\sqrt 2 \).

Loigiaihay.com

Quảng cáo

Gửi bài tập - Có ngay lời giải