Bài 2.8 trang 82 SBT hình học 10Giải bài 2.8 trang 82 sách bài tập hình học 10. Cho tan alpha = 2sqrt 2 với 0^0<alpha<90^0. Tính sin alpha và cos alpha. Quảng cáo
Đề bài Cho \(\tan \alpha = 2\sqrt 2 \) với \({0^0} < \alpha < {90^0}\). Tính \(\sin \alpha \) và \(\cos \alpha \) Phương pháp giải - Xem chi tiết Sử dụng hệ thức \({\sin ^2}\alpha + {\cos ^2}\alpha = 1\) và chú ý dấu của các giác trị lượng giác của góc từ \({90^0}\) đến \({180^0}\). Lời giải chi tiết Ta có: \(\tan \alpha = 2\sqrt 2 \Rightarrow \dfrac{{\sin \alpha }}{{\cos \alpha }} = 2\sqrt 2 \) \( \Rightarrow \sin \alpha = 2\sqrt 2 \cos \alpha \) Mà \({\sin ^2}\alpha + {\cos ^2}\alpha = 1\) \( \Rightarrow 8{\cos ^2}\alpha + {\cos ^2}\alpha = 1\) \( \Leftrightarrow {\cos ^2}\alpha = \dfrac{1}{9} \Leftrightarrow \cos \alpha = \dfrac{1}{3}\) (vì trong khoảng \(\left( {{0^0};{{90}^0}} \right)\) thì \(\cos \alpha > 0\)) Suy ra \(\sin \alpha = \tan \alpha .\cos \alpha \)\( = 2\sqrt 2 .\dfrac{1}{3} = \dfrac{{2\sqrt 2 }}{3}\) Loigiaihay.com
Quảng cáo
|