Bài 2.11 trang 82 SBT hình học 10

Giải bài 2.11 trang 82 sách bài tập hình học 10. Chứng minh rằng ...

Quảng cáo

Đề bài

Chứng minh rằng với \({0^0} \le \alpha  \le {180^0}\) ta có:

a) \({(\sin x + \cos x)^2} = 1 + 2\sin x\cos x\);

b) \({(\sin x - \cos x)^2} = 1 - 2\sin x\cos x\)

c) \({\sin ^4}x + {\cos ^4}x = 1 - 2{\sin ^2}x{\cos ^2}x\).

Phương pháp giải - Xem chi tiết

Sử dụng hệ thức \({\sin ^2}\alpha  + {\cos ^2}\alpha  = 1\), biến đổi vế trái thành vế phải.

Lời giải chi tiết

a) Ta có: \({(\sin x + \cos x)^2}\)\( = {\sin ^2}x + {\cos ^2}x + 2\sin x\cos x\) \( = 1 + 2\sin x\cos x\)

b) Ta có: \({(\sin x - \cos x)^2}\)\( = {\sin ^2}x + {\cos ^2}x - 2\sin x\cos x\) \( = 1 - 2\sin x\cos x\)

c) Ta có: \({\sin ^4}x + {\cos ^4}x\)\( = {({\sin ^2}x)^2} + {({\cos ^2}x)^2}\) \( + 2{\sin ^2}x{\cos ^2}x - 2{\sin ^2}x{\cos ^2}x\) \( = {({\sin ^2}x + {\cos ^2}x)^2} - 2{\sin ^2}x{\cos ^2}x\) \( = 1 - 2{\sin ^2}x{\cos ^2}x\)

Loigiaihay.com

Quảng cáo

Gửi bài tập - Có ngay lời giải