Bài 2.12 trang 82 SBT hình học 10

Giải bài 2.12 trang 82 sách bài tập hình học 10. Chứng minh rằng biểu thức sau đây không phụ thuộc vào...

Quảng cáo

Đề bài

Chứng minh rẳng biểu thức sau đây không phụ thuộc vào \(\alpha \)

a) \(A = {(\sin \alpha  + \cos \alpha )^2} + {(\sin \alpha  - \cos \alpha )^2}\);

b) \(B = {\sin ^4}\alpha  - {\cos ^4}\alpha  - 2{\sin ^2}\alpha  + 1\)

Phương pháp giải - Xem chi tiết

Sử dụng hệ thức \(\sin ^2x+\cos^2x=1\) biến đổi biểu thức đã cho và suy ra kết luận.

Lời giải chi tiết

a) \(A = {(\sin \alpha  + \cos \alpha )^2} + {(\sin \alpha  - \cos \alpha )^2}\)

\( = 1 + 2\sin \alpha \cos \alpha  + 1 - 2\sin \alpha \cos \alpha \)

\( = 2\)

b) \(B = {\sin ^4}\alpha  - {\cos ^4}\alpha  - 2{\sin ^2}\alpha  + 1\)

\( = ({\sin ^2}\alpha  + {\cos ^2}\alpha )({\sin ^2}\alpha  - {\cos ^2}\alpha )\)\( - 2{\sin ^2}\alpha  + 1\)

\( = 1.\left[ {{{\sin }^2}\alpha  - \left( {1 - {{\sin }^2}\alpha } \right)} \right] - 2{\sin ^2}\alpha  + 1\)

\( = {\sin ^2}\alpha  - 1 + {\sin ^2}\alpha  - 2{\sin ^2}\alpha  + 1\) \( = 0\).

Quảng cáo

Gửi bài tập - Có ngay lời giải