Bài 2.5 trang 82 SBT hình học 10

Giải bài 2.5 trang 82 sách bài tập hình học 10. Hãy tính và so sánh giá trị của từng cặp biểu thức sau đây:...

Quảng cáo

Đề bài

Hãy tính và so sánh giá trị của từng cặp biểu thức sau đây:

a) \(A = {\cos ^2}{30^0} - {\sin ^2}{30^0}\) và \(B = \cos {60^0} + \sin {45^0}\);

b) \(C = \dfrac{{2\tan {{30}^0}}}{{1 - {{\tan }^2}{{30}^0}}}\) và \(D = ( - \tan {135^0}).tan{60^0}\).

Phương pháp giải - Xem chi tiết

Sử dụng giá trị lượng giác của các góc đặc biệt từ \({0^0}\) đến \({180^0}\).

Xem chi tiết.

Lời giải chi tiết

a) Ta có: \(A = {\cos ^2}{30^0} - {\sin ^2}{30^0}\)\( = {\left( {\dfrac{{\sqrt 3 }}{2}} \right)^2} - {\left( {\dfrac{1}{2}} \right)^2}\) \( = \dfrac{3}{4} - \dfrac{1}{4} = \dfrac{1}{2}\)

\(B = \cos {60^0} + \sin {45^0}\)\( = \dfrac{1}{2} + \dfrac{{\sqrt 2 }}{2} = \dfrac{{1 + \sqrt 2 }}{2}\)

Vì \(\dfrac{{1 + \sqrt 2 }}{2} > \dfrac{1}{2}\) nên \(B > A\).

b) \(C = \dfrac{{2\tan {{30}^0}}}{{1 - {{\tan }^2}{{30}^0}}}\)\( = \dfrac{{2.\dfrac{1}{{\sqrt 3 }}}}{{1 - {{\left( {\dfrac{1}{{\sqrt 3 }}} \right)}^2}}} = \dfrac{{\dfrac{2}{{\sqrt 3 }}}}{{1 - \dfrac{1}{3}}}\) \( = \dfrac{2}{{\sqrt 3 }}:\dfrac{2}{3} = \dfrac{2}{{\sqrt 3 }}.\dfrac{3}{2} = \sqrt 3 \)

\(D = ( - \tan {135^0}).tan{60^0}\)\( = \tan {45^0}.\tan {60^0} = 1.\sqrt 3  = \sqrt 3 \)

Vậy \(C = D\).

Loigiaihay.com

Quảng cáo

Gửi bài tập - Có ngay lời giải