Bài 1.7 trang 10 SBT hình học 10

Giải bài 1.7 trang 10 sách bài tập hình học 10. Cho hình bình hành ABCD.

Quảng cáo

Đề bài

Cho hình bình hành \(ABCD\). Dựng \(\overrightarrow {AM}  = \overrightarrow {BA} \), \(\overrightarrow {MN}  = \overrightarrow {DA} \), \(\overrightarrow {NP}  = \overrightarrow {DC} \),  \(\overrightarrow {PQ}  = \overrightarrow {BC} \). Chứng minh \(\overrightarrow {AQ}  = \overrightarrow 0 \)

Phương pháp giải - Xem chi tiết

Dựng hình và nhận xét.

Lời giải chi tiết

+ Trên tia \(BA\) lấy điểm \(M\) sao cho \(BA = AM\), khi đó \(\overrightarrow {AM}  = \overrightarrow {BA} \).

+ Qua \(M\) kẻ đường thẳng song song \(DA\), lấy điểm \(N\) sao cho \(MN = DA\) và \(\overrightarrow {MN} \) cùng hướng \(\overrightarrow {DA} \). Khi đó ta được \(\overrightarrow {MN}  = \overrightarrow {DA} \).

+ Qua \(N\) kẻ đường thẳng song song \(DC\), lấy điểm \(P\) sao cho \(NP = DC\) và \(\overrightarrow {NP} \) cùng hướng \(\overrightarrow {DC} \). Khi đó ta được \(\overrightarrow {NP}  = \overrightarrow {DC} \).

+ Qua \(P\) kẻ đường thẳng song song \(BC\), lấy điểm \(Q\) sao cho \(PQ = BC\) và \(\overrightarrow {PQ} \) cùng hướng \(\overrightarrow {BC} \). Khi đó ta được \(\overrightarrow {PQ}  = \overrightarrow {BC} \).

Lại có \(\overrightarrow {MA}  = \overrightarrow {AB} \) và \(\overrightarrow {NP}  = \overrightarrow {DC}  = \overrightarrow {AB} \).

Suy ra \(AM = NP\) và \(AM//NP\). Vậy tứ giác \(AMNP\) là hình bình hành.

Ta có \(\overrightarrow {PQ}  = \overrightarrow {BC} \); \(\overrightarrow {MN}  = \overrightarrow {DA}  = \overrightarrow {CB} \)

Suy ra \(PQ = MN\) và \(PQ//MN\).

Vậy tứ giác \(MNPQ\) là hình bình hành (2).

Từ (1) và (2) suy ra \(A \equiv Q\) hay \(\overrightarrow {AQ}  = \overrightarrow 0 \).

Loigiaihay.com

Quảng cáo

Tham Gia Group Dành Cho 2K9 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close