Bài 1.40 trang 42 SBT hình học 10Giải bài 1.40 trang 42 sách bài tập hình học 10. Chứng minh ba điểm A, B, C thẳng hàng.... Quảng cáo
Lựa chọn câu để xem lời giải nhanh hơn
LG a Cho \(A( - 1;8),B(1;6),C(3;4)\). Chứng minh ba điểm \(A, B, C\) thẳng hàng. Phương pháp giải: Ba điểm \(A,B,C\) phân biệt thẳng hàng nếu tồn tại số thực \(k \ne 0\) sao cho \(\overrightarrow {AB} = k\overrightarrow {AC} \) Lời giải chi tiết: \(\overrightarrow {AB} = (2; - 2),\overrightarrow {AC} = (4; - 4)\) Vậy \(\overrightarrow {AC} = 2\overrightarrow {AB} \)\( \Rightarrow \) ba điểm \(A, B, C\) thẳng hàng. LG b Cho \(A(1;1),B(3;2),C(m + 4;2m + 1)\). Tìm \(m\) để ba điểm \(A, B, C\) thẳng hàng. Phương pháp giải: Ba điểm \(A,B,C\) phân biệt thẳng hàng nếu tồn tại số thực \(k \ne 0\) sao cho \(\overrightarrow {AB} = k\overrightarrow {AC} \) Lời giải chi tiết: \(\overrightarrow {AB} = (2;1),\overrightarrow {AC} = (m + 3;2m)\) Ba điểm \(A, B, C\) thẳng hàng \(\begin{array}{l} Vậy m=1. Loigiaihay.com
Quảng cáo
|