Bài 1.45 trang 42 SBT hình học 10Giải bài 1.45 trang 42 sách bài tập hình học 10. Cho tam giác ABC có... Quảng cáo
Đề bài Cho tam giác \(ABC\) có \(A( - 3;6),B(9; - 10),C( - 5;4)\) a) Tìm tọa độ của trọng tâm \(G\) của tam giác \(ABC\). b) Tìm tọa độ điểm \(D\) sao cho tứ giác \(BGCD\) là hình bình hành. Phương pháp giải - Xem chi tiết a) Sử dụng công thức tọa độ trọng tâm \(\left\{ \begin{array}{l}{x_G} = \dfrac{{{x_A} + {x_B} + {x_C}}}{3}\\{y_G} = \dfrac{{{y_A} + {y_B} + {y_C}}}{3}\end{array} \right.\) b) Sử dụng tính chất hình bình hành \(\overrightarrow {BG} = \overrightarrow {DC} \) Lời giải chi tiết a) Gọi \(G (x_G; y_G)\) là trọng tâm tam giác ABC Ta có: \(\left\{ \begin{array}{l}{x_G} = \dfrac{{ - 3 + 9 - 5}}{3} = \dfrac{1}{3}\\{y_G} = \dfrac{{6 - 10 + 4}}{3} = 0\end{array} \right.\) b) Tứ giác \(BGCD\) là hình bình hành \(\Leftrightarrow \overrightarrow {BG} = \overrightarrow {DC} \) Mà \(\overrightarrow {BG} = (x_G - x_B ; y_G - y_B) = (\dfrac{1}{3} - 9; 0 - (-10)) \); \( \overrightarrow {DC} = (x_C - x_D ; y_C - y_D) = - 5 - {x_D}; 4 - {y_D} \) \( \Leftrightarrow \left\{ \begin{array}{l}\dfrac{1}{3} - 9 = - 5 - {x_D}\\0 - \left( { - 10} \right) = 4 - {y_D}\end{array} \right.\) \( \Leftrightarrow \left\{ \begin{array}{l}{x_D} = \dfrac{{11}}{3}\\{y_D} = - 6\end{array} \right.\) Vậy tọa độ điểm \(D\) là \(D\left( {\dfrac{{11}}{3}; - 6} \right)\). Loigiaihay.com
Quảng cáo
|