Bài 1.47 trang 42 SBT hình học 10

Giải bài 1.47 trang 42 sách bài tập hình học 10. Cho lục giác ABCDEF...

Quảng cáo

Đề bài

Cho lục giác đều \(ABCDEF\). Chọn hệ tọa độ \((O;\overrightarrow i ,\overrightarrow j )\), trong đó \(O\) là tâm của lục giác đều, hai véc tơ \(\overrightarrow i \) và \(\overrightarrow {OD} \) cùng hướng, \(\overrightarrow j \) và \(\overrightarrow {EC} \) cùng hướng . Tính tọa độ các đỉnh của lục giác biết độ dài của lục giác là \(6\).

Phương pháp giải - Xem chi tiết

Dựng hình, tính độ dài các đoạn thẳng và suy ra tọa độ cần tính.

Lời giải chi tiết

Từ hình vẽ ta thấy \(A\left( { - 6;0} \right)\) và \(D\left( {6;0} \right)\) (do các tam giác \(AOB\) và \(COD\) đều nên \(OA = OD = AB = 6\)).

Gọi \(H,K\) lần lượt là hình chiếu của \(C,B\) lên trục \(Ox\).

Khi đó \(CH = DC\sin {60^0} = \dfrac{{6\sqrt 3 }}{2} = 3\sqrt 3 \)

\(OH = \sqrt {O{C^2} - C{H^2}}  \) \(= \sqrt {{6^2} - {{\left( {3\sqrt 3 } \right)}^2}}  = 3\)

Do đó \(C\left( {3;3\sqrt 3 } \right)\).

B đối xứng với C qua Oy nên B(-3; 3√3)

E đối xứng với C qua Ox nên E(3; -3√3)

F đối xứng với C qua O nên F(-3; -3√3))

Vậy \(A\left( { - 6;0} \right)\), \(D\left( {6;0} \right)\), \(B\left( { - 3;3\sqrt 3 } \right)\), \(C\left( {3;3\sqrt 3 } \right)\), \(E\left( {3; - 3\sqrt 3 } \right)\), \(F\left( { - 3; - 3\sqrt 3 } \right)\) .

Loigiaihay.com

Quảng cáo

Tham Gia Group Dành Cho 2K9 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close