Bài 1.1 trang 12 SBT đại số và giải tích 11

Giải bài 1.1 trang 12 sách bài tập đại số và giải tích 11. Tìm tập xác định của các hàm số...

Quảng cáo
Lựa chọn câu để xem lời giải nhanh hơn

Tìm tập xác định của các hàm số

LG a

\(y = \cos \dfrac{{2x}}{{x - 1}}\)

Phương pháp giải:

Phân thức \(\dfrac{{f(x)}}{{g(x)}}\) xác định khi \(g(x) \ne 0\)

Lời giải chi tiết:

Điều kiện xác định: \(x - 1 \ne 0 \Leftrightarrow x \ne 1\)

Vậy \(D =  \mathbb{R}\backslash \left\{ 1 \right\}\).

Quảng cáo
decumar

LG b

\(y = \tan \dfrac{x}{3}\)

Phương pháp giải:

Hàm số \(y = \tan \dfrac{x}{3} = \dfrac{{\sin\dfrac{x}{3}}}{{\cos \dfrac{x}{3}}}\) xác định khi \(\cos \dfrac{x}{3} \ne 0\)

Lời giải chi tiết:

Điều kiện xác định: \(\cos \dfrac{x}{3} \ne 0 \Leftrightarrow \dfrac{x}{3} \ne \dfrac{\pi }{2} + k\pi \) \( \Leftrightarrow x \ne \dfrac{{3\pi }}{2} + k3\pi ,k \in \mathbb{Z}\)

Vậy \(D = \mathbb{R}\backslash \left\{ {\dfrac{{3\pi }}{2} + k3\pi } \right\}\).

LG c

\(y = \cot 2x\)

Phương pháp giải:

Hàm số \(y = \cot 2x = \dfrac{{\cos 2x}}{{\sin 2x}}\) xác định khi \(\sin 2x \ne 0 \)

Lời giải chi tiết:

Điều kiện xác định: \(\sin 2x \ne 0 \Leftrightarrow 2x \ne k\pi \) \( \Leftrightarrow x \ne k\dfrac{\pi }{2},k \in Z\)

Vậy \(D = \mathbb{R}\backslash \left\{ k\dfrac{\pi }{2}\right\}\).

LG d

\(y = \sin \dfrac{1}{{{x^2} - 1}}\)

Phương pháp giải:

Phân thức \(y = \dfrac{{f(x)}}{{g(x)}}\) xác định khi \(g(x) \ne 0\)

Lời giải chi tiết:

Điều kiện xác định: \({x^2} - 1 \ne 0 \Leftrightarrow x \ne  \pm 1\)

Vậy \(D{\rm{  =  \mathbb{R}\backslash }}\left\{ { - 1;1} \right\}\).

 Loigiaihay.com

Quảng cáo

2K7 tham gia ngay group để nhận thông tin thi cử, tài liệu miễn phí, trao đổi học tập nhé!

close