Lý thuyết Phép thử ngẫu nhiên và không gian mẫu. Xác suất của biến cố Toán 9 Cánh diều

Phép thử ngẫu nhiên Các phép thử mà tập hợp \(\Omega \) gồm các kết quả có thể xảy ra của phép thử đó hoàn toàn xác định, các kết quả có tính ngẫu nhiên, ta không thể đoán trước được gọi là phép thử ngẫu nhiên (gọi tắt là phép thử).

Tổng hợp đề thi giữa kì 1 lớp 9 tất cả các môn - Cánh diều

Toán - Văn - Anh - Khoa học tự nhiên

Quảng cáo

Phép thử ngẫu nhiên

Các phép thử mà tập hợp \(\Omega \) gồm các kết quả có thể xảy ra của phép thử đó hoàn toàn xác định, các kết quả có tính ngẫu nhiên, ta không thể đoán trước được gọi là phép thử ngẫu nhiên (gọi tắt là phép thử).

Không gian mẫu

Tập hợp \(\Omega \) gọi là không gian mẫu của phép thử.

Ví dụ: Bạn Lan gieo một con xúc xắc và bạn Hòa gieo một đồng xu được gọi là phép thử.

Kết quả của phép thử là số chấm xuất hiện trên con xúc xác và mặt xuất hiện của đồng xu.

Các kết quả có thể của phép thử là:

Mỗi ô là một kết quả có thể. Không gian mẫu là tập hợp 12 ô của bảng trên.

Do đó không gian mẫu của phép thử là:

\(\Omega  = {\rm{\{ (1,S);(2,S);(3,S);(4,S);(5,S);(6,S);(1,N);(2,N);(3,N);(4,N);(5,N);(6,N)\} }}{\rm{.}}\)

Vậy không gian mẫu có 12 phần tử.

Kết quả đồng khả năng

Các kết quả có thể xảy ra của một phép thử có khả năng xuất hiện như nhau được gọi là đồng khả năng.

Ví dụ:

a) Do hai đồng xu cân đối và đồng chất nên các mặt đều có cùng khả năng xuất hiện. Các kết quả của phép thử là đồng khả năng.

b) Do con xúc xắc không cân đối nên khả năng xuất hiện của các mặt không như nhau. Các kết quả của phép thử không đồng khả năng.

Kết quả thuận lợi

Kết quả thuận lợi cho biến cố A là một kết quả có thể của phép thử làm cho biến cố A xảy ra.

Ví dụ: Bạn Lan gieo một con xúc xắc và bạn Hòa gieo một đồng xu được gọi là phép thử.

Kết quả của phép thử là số chấm xuất hiện trên con xúc xác và mặt xuất hiện của đồng xu.

Các kết quả có thể của phép thử là:

Các kết quả thuận lợi cho biến cố “Số chấm xuất hiện trên con xúc xắc là số chẵn và mặt xuất hiện của đồng xu là mặt sấp” là (2, S); (4, S); (6, S).

Xác suất của biến cố

Giả sử một phép thử có không gian mẫu \(\Omega \) gồm hữu hạn các kết quả đồng khả năng và A là một biến cố. Xác suất của biến cố A, kí hiệu là P(A), được xác định bởi công thức

\(P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega  \right)}}\),

trong đó n(A) là số kết quả thuận lợi cho A và \(n\left( \Omega  \right)\) là tổng số các kết quả có thể xảy ra.

Cách tính xác suất của một biến cố

Để tính xác suất của biến cố A, ta có thể thực hiện các bước sau:

Bước 1: Kiểm tra tính đồng khả năng đối với các kết quả có thể xảy ra của phép thử.

Bước 2: Đếm số kết quả có thể xảy ra, tức là đếm số phần tử của không gian mẫu \(\Omega \).

Bước 3: Đếm số kết quả thuận lợi cho biến cố A.

Bước 4: Lập tỉ số giữa số kết quả thuận lợi cho biến cố A và tổng số kết quả có thể xảy ra.

Ví dụ: Ba bạn Bảo, Châu, Dương được xếp ngẫu nhiên ngồi trên một hàng ghế có ba chỗ ngồi. Tính xác suất của các biến cố sau:

a) E: "Bảo không ngồi ngoài cùng bên phải";

b) F: “Châu và Dương không ngồi cạnh nhau”.

Lời giải:

Kí hiệu ba bạn Bảo, Châu, Dương lần lượt là B, C, D.

Vì việc xếp chỗ ngồi là ngẫu nhiên nên các kết quả có thể là đồng khả năng.

Ta liệt kê các kết quả có thể xảy ra:

• Bảo ngồi ngoài cùng bên trái: có 2 cách xếp là BCD và BDC.

• Bảo ngồi giữa: có 2 cách xếp là CBD và DBC.

• Bảo ngồi ngoài cùng bên phải: có 2 cách xếp là CDB và DCB.

Vậy không gian mẫu của phép thử là \(\Omega  = \left\{ {BCD;{\rm{ }}BDC;{\rm{ }}CBD;{\rm{ }}DBC;{\rm{ }}CDB;{\rm{ }}DCB} \right\}.\)

Tập \(\Omega \) có 6 phần tử.

a) Có 4 kết quả thuận lợi cho biến cố E là BCD, BDC, CBD và DBC.

Vậy \(P\left( E \right) = \frac{4}{6} = \frac{2}{3}\).

b) Có 2 kết quả thuận lợi cho biến cố F là CBD và DBC.

Vậy \(P\left( F \right) = \frac{2}{6} = \frac{1}{3}\).

  • Giải mục 1 trang 35, 36 SGK Toán 9 tập 2 - Cánh diều

    a) Hãy thực hiện hành động: Tung một đồng xu một lần. b) Xét phép thử “Tung một đồng xu một lần”. Viết tập hợp Ω (đọc là ô-mê-ga) gồm các kết quả có thể xảy ra đối với mặt xuất hiện của đồng xu. Tập hợp Ω có bao nhiêu phần tử?

  • Giải mục 2 trang 36, 37, 38 SGK Toán 9 tập 2 - Cánh diều

    Hình 25 mô tả một đĩa tròn bằng bìa cứng được chia làm 12 phần bằng nhau và ghi các số 1,2,3,…,12; chiếc kim được gắn cố định vào trục quay ở tâm của đĩa. Xét phép thử ‘Quay đĩa tròn một lần”. a) Viết tập hợp Ω gồm các kết quả có thể xảy ra đối với số ghi ở hình quạt mà chiếc kim chỉ vào khi đĩa dừng lại. b) Liệt kê các kết quả thuận lợi cho biến cố A: “Chiếc kim chỉ vào hình quạt ghi số chia hết cho 3”. c) Tìm tỉ số giữa số các kết quả thuận lợi cho biến cố A và số phần tử của tập hợp Ω.

  • Giải bài tập 1 trang 38 SGK Toán 9 tập 2 - Cánh diều

    Một hộp có 20 viên bi với kích thước và khối lượng như nhau. Bạn Ngân viết lên các viên bi đó các số 1, 2, 3, 4, …, 20; hai viên bi khác nhau thì viết hai số khác nhau. Xét phép thử “Lấy ngẫu nhiên một viên bi trong hộp”. a) Liệt kê các kết quả có thể xảy ra đối với số xuất hiện trên viên bi được lấy ra. b) Viết không gian mẫu của phép thử đó c) Tính xác suất của biến cố: “Số xuất hiện trên viên bi được lấy ra chia cho 7 dư 1”.

  • Giải bài tập 2 trang 38 SGK Toán 9 tập 2 - Cánh diều

    Viết ngẫu nhiên một số tự nhiên lớn hơn 499 và nhỏ hơn 1000. a) Có tất cả bao nhiêu kết quả có thể xảy ra ở phép thử trên. b) Tính xác suất của mỗi biến cố sau: A: “Số tự nhiên được viết ra chia hết cho 100”. B: “Số tự nhiên được viết ra là lập phương của một số tự nhiên”.

  • Giải bài tập 3 trang 39 SGK Toán 9 tập 2 - Cánh diều

    Một hộp có 52 chiếc thẻ cùng loại, mỗi thẻ được ghi một trong các số 1, 2, 3, 4, …, 52, hai thẻ khác nhau thì viết hai số khác nhau. Rút ngẫu nhiên một thẻ trong hộp, tính xác suất của mỗi biến cố sau: a) “Số xuất hiện trên thẻ được rút ra là số nhỏ hơn 27”. b) “Số xuất hiện trên thẻ được lấy ra lớn hơn 19 và nhỏ hơn 51”.

Quảng cáo

Tham Gia Group 2K10 Ôn Thi Vào Lớp 10 Miễn Phí

close