Lý thuyết Khai căn bậc hai với phép nhân và phép chia Toán 9 Kết nối tri thức

1. Khai căn bậc hai và phép nhân Liên hệ giữa phép khai căn bậc hai và phép nhân

Quảng cáo

1. Khai căn bậc hai và phép nhân

Liên hệ giữa phép khai căn bậc hai và phép nhân

Với A, B là biểu thức không âm, ta có \(\sqrt A .\sqrt B  = \sqrt {AB} \).

Ví dụ:

\(\sqrt {27} .\sqrt 3  = \sqrt {27.3}  = \sqrt {81}  = 9\)

\(\sqrt 5 \left( {\sqrt {125}  + \sqrt 5 } \right) = \sqrt 5 .\sqrt {125}  + \sqrt 5 .\sqrt 5  = \sqrt {5.125}  + \sqrt {5.5}  = 25 + 5 = 30\)

Chú ý:

- Kết quả trên có thể mở rộng cho nhiều biểu thức không âm, chẳng hạn:

\(\sqrt A .\sqrt B .\sqrt C  = \sqrt {A.B.C} \) (với \(A \ge 0,B \ge 0,C \ge 0\)).

Ví dụ: \(\sqrt 3 .\sqrt 5 .\sqrt {15}  = \sqrt {3.5.15}  = \sqrt {225}  = 15\)

- Nếu \(A \ge 0,B \ge 0,C \ge 0\) thì \(\sqrt {{A^2}{B^2}{C^2}}  = ABC\).

Ví dụ: Với \(a \ge 0,b < 0\) thì \(\sqrt {25{a^2}{b^2}}  = \sqrt {{5^2}.{a^2}.{{\left( { - b} \right)}^2}}  = \sqrt {{5^2}} .\sqrt {{a^2}} .\sqrt {{{\left( { - b} \right)}^2}}  = 5.a.\left( { - b} \right) =  - 5ab\)

2. Khai căn bậc hai và phép chia

Liên hệ giữa phép khai căn bậc hai và phép chia

Nếu A, B là các biểu thức với \(A \ge 0,B > 0\) thì \(\frac{{\sqrt A }}{{\sqrt B }} = \sqrt {\frac{A}{B}} \).

Ví dụ: \(\frac{{\sqrt 8 }}{{\sqrt 2 }} = \sqrt {\frac{8}{2}}  = \sqrt 4  = 2\);

Với \(a > 0\) thì \(\frac{{\sqrt {52{a^3}} }}{{\sqrt {13a} }} = \sqrt {\frac{{52{a^3}}}{{13a}}}  = \sqrt {4{a^2}}  = \sqrt {{{\left( {2a} \right)}^2}}  = 2a\).

Quảng cáo

Tham Gia Group 2K10 Ôn Thi Vào Lớp 10 Miễn Phí

close