Lý thuyết Hàm số y = ax² (a ≠ 0) Toán 9 Kết nối tri thức1. Hàm số \(y = a{x^2}\left( {a \ne 0} \right)\) Hàm số \(y = a{x^2}\left( {a \ne 0} \right)\) xác định với mọi giá trị x thuộc \(\mathbb{R}\). Tổng hợp đề thi giữa kì 1 lớp 9 tất cả các môn - Kết nối tri thức Toán - Văn - Anh - Khoa học tự nhiên Quảng cáo
1. Hàm số \(y = a{x^2}\left( {a \ne 0} \right)\)
Ví dụ: Hàm số \(y = 2{x^2},y = - \frac{3}{2}{x^2}\) là các hàm số có dạng \(y = a{x^2}\left( {a \ne 0} \right)\). 2. Đồ thị của hàm số \(y = a{x^2}\left( {a \ne 0} \right)\) Cách vẽ đồ thị hàm số \(y = a{x^2}\left( {a \ne 0} \right)\)
Ví dụ: Vẽ đồ thị của hàm số \(y = {x^2}\). Lập bảng một số giá trị tương ứng giữa x và y: Biểu diễn các điểm \(\left( { - 2;4} \right)\), \(\left( { - 1;1} \right)\), \(\left( {0;0} \right)\), \(\left( {1;1} \right)\), \(\left( {2;4} \right)\) trên mặt phẳng tọa độ Oxy và nối chúng lại với nhau, ta được đồ thị hàm số \(y = {x^2}\) như hình vẽ sau: Tính đối xứng của đồ thị hàm số \(y = a{x^2}\left( {a \ne 0} \right)\)
Nhận xét: - Khi vẽ đồ thị hàm số \(y = a{x^2}\left( {a \ne 0} \right)\), ta cần xác định tối thiểu 5 điểm thuộc đồ thị là gốc tọa độ O và hai cặp điểm đối xứng với nhau qua trục tung Oy. - Do đồ thị của hàm số \(y = a{x^2}\left( {a \ne 0} \right)\) nhận trục tung Oy là trục đối xứng nên ta có thể lập bảng giá trị của hàm số này với những giá trị x không âm và vẽ phần đồ thị tương ứng ở bên phải trục tung, sau đó lấy đối xứng phần đồ thị đã vẽ qua trục tung ta sẽ được đồ thị của hàm số đã cho.
Quảng cáo
|