Giải mục 1 trang 6, 7, 8 SGK Toán 9 tập 1 - Kết nối tri thức

Câu “Quýt, cam mười bảy quả tươi” có nghĩa là tổng số cam và số quýt là 17. Hãy viết hệ thức với hai biến x và y biểu thị giả thiết này.

Quảng cáo
Lựa chọn câu để xem lời giải nhanh hơn

HĐ1

Video hướng dẫn giải

Trả lời câu hỏi Hoạt động 1 trang 6 SGK Toán 9 Kết nối tri thức

Câu “Quýt, cam mười bảy quả tươi” có nghĩa là tổng số cam và số quýt là 17. Hãy viết hệ thức với hai biến x và y biểu thị giả thiết này.

Phương pháp giải:

Phía trên của câu hỏi đã cho: Gọi x là số cam, y là số quýt ( với x, y nguyên dương)

Tổng số cam và số quýt tức là phép tính cộng x quả quýt và y quả cam

Lời giải chi tiết:

Hệ thức biểu thị: x+y=17.x+y=17.

HĐ2

Video hướng dẫn giải

Trả lời câu hỏi Hoạt động 2 trang 6 SGK Toán 9 Kết nối tri thức

Tương tự, hãy viết hệ thức với hai biến x và y biểu thị giả thiết cho bởi các câu thơ thứ ba, thứ tư và thứ năm.

Quýt, cam mười bảy quả tươi

Đem chia cho một trăm người cùng vui.

Chia ba mỗi quả quýt rồi,

Còn cam, mỗi quả chia mười vừa xinh.

Trăm người, trăm miếng ngọt lành.

Quýt, cam mỗi loại tính rành là bao?

Phương pháp giải:

-         Câu thơ thứ 3 (Chia ba mỗi quả quýt rồi) tức là mỗi quả quýt thì ta sẽ có 3 miếng nên y quả sẽ có 3y3y miếng

-         Câu thơ thứ tư (Còn cam, mỗi quả chia mười vừa xinh) tức là mỗi quả cam thì ta sẽ có 10 miếng nên x quả sẽ có 10x10x miếng

-         Trăm người trăm miếng tức là số miếng quýt (3y3y miếng) và số miếng cam (10x10x miếng) tổng là 100 miếng

Lời giải chi tiết:

Hệ thức liên hệ giữa x và y qua các câu thơ thứ ba, thứ tư và thứ năm là 10x+3y=100.10x+3y=100.

LT1

Video hướng dẫn giải

Trả lời câu hỏi Luyện tập 1 trang 6 SGK Toán 9 Kết nối tri thức

Hãy viết một phương trình bậc nhất hai ẩn và chỉ ra một nghiệm của nó.

Phương pháp giải:

Phương trình bậc nhất hai ẩn x và y là hệ thức dạng ax+by=c(1)ax+by=c(1) trong đó a,b và c là các số đã biết a0a0 hoặc b0.b0. Nên ta có thể chọn a, b,c là số thực bất kì.

Nếu thay x=x0;y=y0x=x0;y=y0 vào phương trình số (1)(1) thì ta có ax0+by0=cax0+by0=c là một khẳng định đúng thì (x0;y0)(x0;y0) là nghiệm của phương trình (1)(1)

Lời giải chi tiết:

Ta có 2xy=52xy=5 là một phương trình bậc nhất hai ẩn.

 Cặp số (3;1)(3;1) là một nghiệm của phương trình 2xy=52xy=52.31=5.2.31=5. (luôn đúng).

LT2

Video hướng dẫn giải

Trả lời câu hỏi Luyện tập 2 trang 8 SGK Toán 9 Kết nối tri thức

Viết nghiệm và biểu diễn hình học tất cả các nghiệm của mỗi phương trình bậc nhất hai ẩn sau:

a) 2x3y=5;2x3y=5;

b) 0x+y=3;0x+y=3;

c) x+0y=2.x+0y=2.

Phương pháp giải:

Để viết nghiệm của một phương trình bậc nhất hai ẩn, ta cần rút y theo x (by=cax)(by=cax) từ đó ta giải được y=caxby=caxb với b0.b0. Đối với trường hợp b=0b=0 thì ta làm ngược lại (rút x theo y).

Biểu diễn hình học tất cả các nghiệm của phương trình bậc nhất hai ẩn là đường thẳng ax+by=c.ax+by=c.

Lời giải chi tiết:

a)     2x3y=5;2x3y=5;

Ta có y=2x53y=2x53 nên mỗi cặp số (x;2x53)(x;2x53) với xR tùy ý là một nghiệm của phương trình 2x3y=5.

Biểu diễn hình học tất cả các nghiệm của phương trình 2x3y=5.

Cho x=0y=53A(0;53)

y=0x=52B(52;0)

Đường thẳng 2x3y=5 đi qua hai điểm A và B

Các nghiệm là tọa độ của một điểm thuộc đường thẳng 2x3y=5.

b)    0x+y=3;

Ta có 0x+y=3 rút gọn thành y=3 nên phương trình có nghiệm là (x;3) với xR tùy ý.

Mỗi nghiệm này là tọa độ của một điểm thuộc đường thẳng song song với trục hoành và cắt trục tung tại điểm (0;3). Ta gọi đó là đường thẳng y = 3

Các nghiệm là tọa độ của một điểm thuộc đường thẳng 0x+y=3.

c)     x+0y=2.

Ta có x+0y=2 rút gọn thành x=2 nên phương trình có nghiệm là (2;y) với yR tùy ý.

Mỗi nghiệm này là tọa độ của một điểm thuộc đường thẳng song song với trục tung và cắt trục hoành tại điểm (-2; 0). Ta gọi đó là đường thẳng x = -2

Các nghiệm là tọa độ của một điểm thuộc đường thẳng x+0y=2.

Quảng cáo

Tham Gia Group 2K10 Ôn Thi Vào Lớp 10 Miễn Phí

>> Học trực tuyến Lớp 9 & Lộ trình UP10 trên Tuyensinh247.com

>> Chi tiết khoá học xem: TẠI ĐÂY

Đầy đủ khoá học các bộ sách (Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều), theo lộ trình 3: Nền Tảng, Luyện Thi, Luyện Đề. Bứt phá điểm lớp 9, thi vào lớp 10 kết quả cao. Hoàn trả học phí nếu học không hiệu quả.

close