Giải câu hỏi trang 25, 26, 27 SGK Toán 9 tập 2 - Kết nối tri thức

Gọi x là lãi suất gửi tiết kiệm của bác Lan (x được cho dưới dạng số thập phân). Hãy biểu thị số tiền thu được (cả vốn lẫn lãi) của bác Lan sau kì gửi thứ nhất theo x.

Tổng hợp đề thi học kì 1 lớp 9 tất cả các môn - Kết nối tri thức

Toán - Văn - Anh - KHTN - Lịch sử và Địa lí

Quảng cáo
Lựa chọn câu để xem lời giải nhanh hơn

HĐ1

Video hướng dẫn giải

Trả lời câu hỏi Hoạt động 1 trang 25 SGK Toán 9 Kết nối tri thức

Gọi x là lãi suất gửi tiết kiệm của bác Lan (x được cho dưới dạng số thập phân). Hãy biểu thị số tiền thu được (cả vốn lẫn lãi) của bác Lan sau kì gửi thứ nhất theo x.

Phương pháp giải:

Nếu gửi a triệu đồng vào ngân hàng với lãi suất x% theo thể thức lãi kép thì tổng số tiền thu được (cả vốn lẫn lãi) là: \(a + a.x\% \) (triệu đồng).

Lời giải chi tiết:

Tổng số tiền cả vốn lẫn lãi thu được sau kì gửi thứ nhất là: \(100 + 100x = 100\left( {1 + x} \right)\) (triệu đồng)

HĐ2

Video hướng dẫn giải

Trả lời câu hỏi Hoạt động 2 trang 25 SGK Toán 9 Kết nối tri thức

Hết kì gửi thứ nhất, bác Lan không rút tiền ra mà tiếp tục gửi tiết kiệm kì thứ hai với lãi suất như cũ. Hãy biểu thị số tiền thu được (cả vốn lẫn lãi) của bác Lan sau kì gửi thứ hai theo x.

Phương pháp giải:

Nếu gửi a triệu đồng vào ngân hàng với lãi suất x% theo thể thức lãi kép thì tổng số tiền thu được (cả vốn lẫn lãi) là: \(a + a.x\% \) (triệu đồng).

Lời giải chi tiết:

Số tiền cả vốn lẫn lãi bác Lan thu được sau kì gửi thứ hai là:

\(100\left( {1 + x} \right) + \left[ {100\left( {1 + x} \right)} \right]x = 100\left( {1 + x} \right)\left( {1 + x} \right) = 100{\left( {x + 1} \right)^2}\) (triệu đồng).

HĐ3

Video hướng dẫn giải

Trả lời câu hỏi Hoạt động 3 trang 25 SGK Toán 9 Kết nối tri thức

Dựa vào đề bài, viết phương trình ẩn x thu được và giải phương trình để tìm ẩn x. Từ đó, trả lời câu hỏi trong tình huống mở đầu.

Phương pháp giải:

+ Vì sau hai năm bác Lan nhận được 118,81 triệu đồng nên ta có phương trình: \(100{\left( {x + 1} \right)^2} = 118,81\).

+ Giải phương trình ẩn x, đối chiếu điều kiện và đưa ra kết luận.

Lời giải chi tiết:

Vì sau hai năm bác Lan nhận được 118,81 triệu đồng nên ta có phương trình:

\(100{\left( {x + 1} \right)^2} = 118,81\)

\({\left( {x + 1} \right)^2} = 1,1881\)

\(x + 1 = 1,09\) (do \(x > 0\))

\(x = 0,09\)

Vậy lãi suất gửi tiết kiệm là 9%.

LT

Video hướng dẫn giải

Trả lời câu hỏi Luyện tập trang 27 SGK Toán 9 Kết nối tri thức

Một đội xe gồm các xe tải cùng loại, cần phải chở 120 tấn hàng. Tuy nhiên, khi làm việc, có hai xe phải điều chuyển đi nơi khác nên mỗi xe phải chở thêm 3 tấn hàng. Hỏi đội xe đó có bao nhiêu chiếc xe tải?

Phương pháp giải:

Các bước giải một bài toán bằng cách lập phương trình:

Bước 1. Lập phương trình:

- Chọn ẩn số và đặt điều kiện thích hợp cho ẩn số.

- Biểu diễn các đại lượng chưa biết theo ẩn và các đại lượng đã biết.

- Lập phương trình biểu thị mối quan hệ giữa các đại lượng.

Bước 2. Giải phương trình.

Bước 3. Trả lời: Kiểm tra xem trong các nghiệm của phương trình, nghiệm nào thỏa mãn điều kiện của ẩn, nghiệm nào không, rồi kết luận.

Lời giải chi tiết:

Gọi số chiếc xe tải của đội xe là x (chiếc), điều kiện: \(x \in \mathbb{N}*,x > 2\).

Khi đó, mỗi xe cần phải chở \(\frac{{120}}{x}\) (tấn hàng).

Khi làm việc, số xe dùng để chở hàng là: \(x - 2\) (chiếc)

Khi làm việc, mỗi xe cần chở \(\frac{{120}}{{x - 2}}\) (tấn hàng)

Vì mỗi chiếc xe phải chở thêm 3 tấn hàng nên ta có phương trình:

\(\frac{{120}}{{x - 2}} - 3 = \frac{{120}}{x}\)

Quy đồng hai vế của phương trình ta được:

\(\frac{{120x}}{{x\left( {x - 2} \right)}} - \frac{{3x\left( {x - 2} \right)}}{{x\left( {x - 2} \right)}} = \frac{{120\left( {x - 2} \right)}}{{x\left( {x - 2} \right)}}\)

Nhân cả hai vế của phương trình với \(x\left( {x - 2} \right)\) để khử mẫu ta được phương trình bậc hai:

\(120x - 3x\left( {x - 2} \right) = 120\left( {x - 2} \right)\)

\(120x - 3{x^2} + 6x = 120x - 240\)

\(3{x^2} - 6x - 240 = 0\)

\({x^2} - 2x - 80 = 0\)

Ta có: \(\Delta ' = {\left( { - 1} \right)^2} + 80 = 81 > 0\) nên phương trình có hai nghiệm phân biệt

\({x_1} = 1 + 9 = 10\left( {tm} \right)\); \({x_2} = 1 - 9 =  - 8\) (loại)

Vậy đội xe có 10 chiếc xe tải.

  • Giải bài tập 6.28 trang 27 SGK Toán 9 tập 2 - Kết nối tri thức

    Một mảnh đất hình chữ nhật có diện tích (360{m^2}). Nếu tăng chiều rộng 3m và giảm chiều dài 4m thì diện tích mảnh đất không đổi. Tìm các kích thước của mảnh đất đó.

  • Giải bài tập 6.29 trang 27 SGK Toán 9 tập 2 - Kết nối tri thức

    Sau hai năm, số dân của một thành phố tăng từ 1 200 000 người lên 1 542 000 người. Hỏi trung bình mỗi năm dân số của thành phố đó tăng bao nhiêu phần trăm?

  • Giải bài tập 6.30 trang 27 SGK Toán 9 tập 2 - Kết nối tri thức

    Một thanh sô cô la có dạng hình hộp chữ nhật với chiều dài 12cm, chiều rộng 7cm và độ dày 3cm. Do giá nguyên liệu ca cao tăng nhưng vẫn muốn giữ nguyên giá bán nên nhà sản xuất quyết định giảm 10% thể tích của mỗi thanh sô cô la. Để thực hiện việc này, nhà sản xuất dự định làm thanh cô la mới có độ dày 3cm như thanh cũ, nhưng chiều dài và chiều rộng sẽ cùng giảm đi một số centimét. Hỏi kích thước của thanh sô cô la mới là bao nhiêu?

  • Giải bài tập 6.31 trang 27 SGK Toán 9 tập 2 - Kết nối tri thức

    Một máy bay khởi hành từ Hà Nội vào Thành phố Hồ Chí Minh, sau đó nghỉ 96 phút và tiếp tục bay về Hà Nội với vận tốc lớn hơn lúc đi là 100km/h. Tổng thời gian của cả hành trình, kể cả từ khi xuất phát từ Hà Nội đến khi quay về Hà Nội là 6 giờ. Tính vận tốc của máy bay lúc đi, biết quãng đường Hà Nội – Thành phố Hồ Chí Minh dài khoảng 1200km.

  • Giải bài tập 6.32 trang 27 SGK Toán 9 tập 2 - Kết nối tri thức

    Một ô tô khách khởi hành từ Hà Nội đi Hải Phòng. Sau đó 30 phút, một ô tô con xuất phát từ cùng địa điểm ở Hà Nội và cũng đi về Hải Phòng trên cùng tuyến đường, với vận tốc lớn hơn vận tốc của ô tô khách là 20km/h. Hai xe đến cùng một địa điểm ở Hải Phòng tại một thời điểm. Hãy tìm vận tốc của mỗi ô tô, biết rằng quãng đường Hà Nội – Hải Phòng dài khoảng 120km.

Quảng cáo

Tham Gia Group 2K10 Ôn Thi Vào Lớp 10 Miễn Phí

close